The fourth new farming model Fenlong is identified as megascience for the first time. Fenlong can be directly applied to farming of farmland, remoulding of mortar black soil and saline alkali land and development of d...The fourth new farming model Fenlong is identified as megascience for the first time. Fenlong can be directly applied to farming of farmland, remoulding of mortar black soil and saline alkali land and development of degraded grassland. Deep loosening can create huge soil reservoirs, reduce fertilization, promote indi- rectly the improvement of river water fisheries and water sources and the upgrading of shaping and hydropower industry, thus making a new round of mobilization and pooling of natural resources. As a result, the nature is able to produce good food needed by human, the spatial dimension of the land is increased, the natural pre- cipitation storage is increased, the flood and drought disasters are reduced, the eco-environment is improved, and the economic benefits are increased. Fenlong is not restricted to global application by ecological region and crop variety and is not subject to the time-space constraints for a hundred thousand years. On the basis of utilizing the heaven and earth resources, it brings about a huge effect of mega- science. Compare with traditional farming, the depth under the mode of Fenlong is increased by 2-3 times, the contents of nutrient, water, oxygen and microorganism in the soil are increased by 10%-200%, the content of pale salt is increased by 20%-40%, the temperature is increased by 2-4 ~C, and the photosynthetic efficiency of crops is improved by 10%. Under the cultivation mode of Fenlong, the yield of crop applied with no fertilizers is increased by more than 10%, crop yield is still in- creased by more than 5% when the application amount of chemical fertilizer is re- duced by 10%-20%. Under the farming mode of Fenlong combined with no in- crease in fertilization, the crop yield, crop quality, farming efficiency, natural precipi- tation storage and air humidity are increased by 10%-50%, 5%, 15%, 100% and 5%, respectively, and the emissions of methane and other gases are reduced by more than 5%. Even in mortar black soil, saline alkali land and degraded grassland, the yield is still increased by 15%-50%. These improvement effects can last for many years, helping achieve the real harmonious coexistence between human and nature.展开更多
The basic theory and effect of the new farming method of "Fenlong" cultivation which has been included in the main extension technology of Ministry of Agriculture of the People's Republic of China is fully illustra...The basic theory and effect of the new farming method of "Fenlong" cultivation which has been included in the main extension technology of Ministry of Agriculture of the People's Republic of China is fully illustrated for the first time, and it is the fourth set (generation) of farming modes and methods following manpower, animal and mechanical (tractor) farming. It follows the natural law to achieve soil activation, water saving, oxygen increase, warming and desalination through the active use of natural resources like soil, rainfall and solar energy, thereby promoting a new round of natural agricultural production and quality improvement and water con- servation, which has crop yield increase by 10%-30%, quality improvement of 5%, natural precipitation retaining increase by100%. The characteristics and mechanism are the use of spiral drill for one-time completion of the land preparation by drilling vertically to 30-50 cm of soil layer through high speed peeling. After instant high temperature and many fierce impacts, mechanical frictions, it could achieve the multiplication of the number of loose soil, soil physical modification and expansion of the soil nutrients, reservoirs, oxygen, microorganisms ("Four pools"). Fenlong cultivation can give birth to new farming culture and civilization, and it can achieve the physical "desalinized" transformation and utilization of saline soil. The formation of Fenlong green farming technology system makes it possible to invent the farming tools of "serf-propelled Fenlong machinery" that has got the patent, and it is the method for farmland (dry land, paddy field) Fenlong cultivation, saline-alkali soil smash-ridging cultivation and for the abundance of grass ecology on degraded grassland. The application of Fenlong "4+1" (arable, saline-alkali soil, grasslands, Sponge City+rivers) green development in China can achieve the "double safety" of food and living space.展开更多
We evaluated the dietary protein requirements of juvenile turbot (Scophthalmus maximus L.) and their effects on aquatic quality. Five experimental diets were formulated containing 450, 480, 500, 520, and 540 g/kg. Eac...We evaluated the dietary protein requirements of juvenile turbot (Scophthalmus maximus L.) and their effects on aquatic quality. Five experimental diets were formulated containing 450, 480, 500, 520, and 540 g/kg. Each diet was randomly assigned to triplicate groups of juvenile turbot (mean initial body weight 34.5 ± 5.5 g) for 88 d. Both the weight gain ratio and feed efficiency increased with increasing dietary protein up to 500 g/kg, but no further improvement was detected when dietary protein levels were >500 g/kg. Protein intake and digestion increased with protein levels, while fecal nitrogen and nitrogen content in seawater increased only when dietary protein exceeded 500 g/kg. Protein digestibility was highest at intermediate dietary protein levels. Chemical oxygen demand, nitrite-nitrogen (NO2--N) and phosphatic-phosphor (PO43--P) levels increased in the rearing water as dietary protein levels increased. The optimum eco-nutrition level of dietary protein for juvenile turbot was 500 g/kg under the current experimental conditions. The diets containing 540 and 500 g/kg protein had similar growth rates and feed conversion ratios, but levels of ammonia (NH4+) and nitrogen were considerably higher in the water and feces, respectively, at the higher level of dietary protein. The difference in the pattern of change between body weight gain and ammonia concentration in water with increasing dietary protein is described by rhomb characteristics.展开更多
Developments along the Santubong River basin may have an impact on the aquatic ecosystem. To determine the impacts of activities on the water quality, ten stations were selected for water quality study over 9 months. ...Developments along the Santubong River basin may have an impact on the aquatic ecosystem. To determine the impacts of activities on the water quality, ten stations were selected for water quality study over 9 months. Results show that salinity increases from 14.0 PSU upstream to 30.4 PSU downstream. Lowest DO range was 2.3-4.1 mg/L. TSS ranged was 20-135 mg/L and the highest was observed near construction and residential areas, the second and third highest near shrimp culture discharge areas. BOD5 was the highest near construction and residential areas. BOD5 of a station near shrimp culture was not significantly different from the residential areas. Two stations near shrimp culture site also recorded the highest Chl-a. The highest ammonia-nitrogen, nitrite-nitrogen and reactive phosphorus were observed at stations near shrimp farm sites whereas nitrate-nitrogen was the highest near construction and residential areas. Cage culture site showed the highest phosphorus and second highest nitrite-nitrogen and ammonia-nitrogen. This study showed that TSS and BOD5 were elevated near residential and construction areas and nutrients were elevated near shrimp farm sites resulting in algal bloom. Therefore, it is recommended that residential and shrimp farm discharge be treated to acceptable quality before discharge to protect the aquatic resources.展开更多
This study examined the spatiotemporal dynamics of colored dissolved organic matter (CDOM) and spectral slope (S), and further to analyze its sources in three productive water supplies (Eagle Creek, Geist and Mor...This study examined the spatiotemporal dynamics of colored dissolved organic matter (CDOM) and spectral slope (S), and further to analyze its sources in three productive water supplies (Eagle Creek, Geist and Morse reservoirs) from Indiana, USA. The re- sults showed that he absorption coefficient aCDOM(440) ranged from 0.37 m-1 to 3.93 m-1 with an average of 1.89 ± 0.76 m-1 (±SD) for the aggregated dataset, and S varied from 0.0048 nm -1 to 0.0239 nm-1 with an average of 0.0108 ±0.0040 nmI. A significant relation- ship between S and aCDOM(440) can be fitted with a power equation (S = 0.013 × aCDOM(440)-0.42, R2 = 0.612), excluding data from Geist Reservoir during high flow (12 April 2010) and the Morse Reservoir on 25 June 2010 due to a T-storm achieves even higher determina- tion coefficient (R2 = 0.842). Correlation analysis indicated that aCDOM(440) has strong association with inorganic suspended matter (ISM) concentration (0.231 〈 R2 〈 0.786) for each of the field surveys, and this trend followed the aggregated datasets (R2 = 0.447, p 〈 0.001). In contrast, chlorophyll-a was only correlated with aCDOM(440) in summer and autumn (0.081 〈 R2 〈 0.763), indicating that CDOM is mainly from terrigenous sources in early spring and that phytoplankton contributed during the algal blooming season. The S value was used to characterize CDOM origin. The results indicate that the CDOM source is mainly controlled by hydrological varia- tions, while phytoplankton originated organic matter also closely linked with CDOM dynamics in three productive reservoirs.展开更多
Tomato seedlings were grown in substrate culture with pots. The formulation of Holland Greenhouse Horticulture Research Institute was used(as CK) and the effects of different Ca concentrations(LCa, CK and HCa)on growt...Tomato seedlings were grown in substrate culture with pots. The formulation of Holland Greenhouse Horticulture Research Institute was used(as CK) and the effects of different Ca concentrations(LCa, CK and HCa)on growth, yield, and fruit quality(protein, Vitamin C, nitrates, organic acid and soluble sugar) of tomato were studied keeping concentrations of other nutrients unchanged in the nutrient solution. The results showed that parameters related to the growth of tomato(plant height and Stem diameter), changes of tomato yield per plant and quality of tomato fruits were the highest when the plants were grown at 20% Ca treatments. In the second study, increased EC concentrations of nutrient solution resulted in stronger plants with improved yields and quality. Four different concentration gradients of nutrient solution treatment were designed based on the results of the first research stage(EC=1.5, 2.5, 3.5, 4.5 m S/cm, respectively). The single tomato plant had the highest production which is 2 268.994 g/plant, when the nutrient solution strength was at EC=1.5 m S cm, whereas they have the best fruit quality when the solution strength at EC 4.5 m S/cm. This suggests the need for wide popularization of the nutrient solution formula in large areas to improve the tomato production.展开更多
The effects of soil and water conservation (SWC) on soil properties are well documented. However, definitive and quantitative information of SWC and its interactions with soil properties on soil productivity is lack...The effects of soil and water conservation (SWC) on soil properties are well documented. However, definitive and quantitative information of SWC and its interactions with soil properties on soil productivity is lacking for hilly red soil region of southern China. Experiments were conducted in the hilly red soil region of southern China for seven years in three rtmoffplots, each of which represented different SWC forest-grass measures. Principal component analysis and multiple regression techniques were used to relate the aboveground biomass (representing soil productivity) to soil properties. Based on the final regression equations, soil organic carbon content (Sot) is significantly correlated with soil productivity under the condition of forest-grass measures, whereas pH value and cation exchange capacity (Cee) are the main factors for soil productivity without SWC. Therefore, SWC plays an important role in sequestering Soc and improving soil productivity.展开更多
Guneshli is a unique oil field for.its huge oil reserves. Fasila layer is one of the main productive series with more than 3,300 tons of oil production per year. It is an important task to continue efficently develop ...Guneshli is a unique oil field for.its huge oil reserves. Fasila layer is one of the main productive series with more than 3,300 tons of oil production per year. It is an important task to continue efficently develop this object. Development of Fasila was analysed based on geological-mathematical models, production performance was predicted through use of advanced "evolution" modeling program. In addition, the impact of water injection from deep water Guneshly was identified and relavant proposals were put forward.展开更多
River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help...River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help in developing an effective catchment management strategy to protect precious water resources. This study analyzed river water quality, patterns of terrestrial and riparian ecosystems, intensity of agricultural activities, industrial structure, and spatial distribution of pollutant emissions in the Haihe River Basin in China for the year of 2010, identifying the variables that have the greatest impact on river water quality. The area percentage of farmland in study area, the percentage of natural vegetation cover in the 1000-m riparian zone, rural population density, industrial Gross Domestic Product(GDP)/km^2, and industrial amino nitrogen emissions were all significantly correlated with river water quality(P < 0.05). Farming had the largest impact on river water quality, explaining 43.0% of the water quality variance, followed by the coverage of natural vegetation in the 1000-m riparian zone, which explained 36.2% of the water quality variance. Industrial amino nitrogen emissions intensity and rural population density explained 31.6% and 31.4% of the water quality variance, respectively, while industrial GDP/km^2 explained 26.6%. Together, these five indicators explained 67.3% of the total variance in water quality. Consequently, water environmental management of the Haihe River Basin should focus on adjusting agricultural activities, conserving riparian vegetation, and reducing industrial pollutant emissions by optimizing industrial structure. The results demonstrate how human activities drive the spatial pattern changes of river water quality, and they can provide reference for developing land use guidelines and for prioritizing management practices to maintain stream water quality in a large river basin.展开更多
Meat and meat products are extremely perishable, so special care and handling must be exercised during slaughtering operation. Moreover, due to its high nutritive value, deterioration set in immediately after slaughte...Meat and meat products are extremely perishable, so special care and handling must be exercised during slaughtering operation. Moreover, due to its high nutritive value, deterioration set in immediately after slaughtered, therefore it is necessary to preserved meat, using simple techniques. One of such method of preservation is drying method to produced Intermediate Moisture Meat (IMM). The quality attributes and microbiological status of Kundi, a West African dried meat product (IMM) were studied over three months of storage period by comparing commercial products and laboratory Kundi products. Chemical and minerals composition and microbiological counts were reported. Moisture and water activity results indicated that the experimental Kundi was sufficiently dried to minimize microbial growth. Fat oxidation levels measured by free fatty acids (FFA, %) on extracted fats were unacceptably high for the commercial Kundi (2.64%), which may be a reflection of the oil used in spraying the products. Processing of Kundi, appears to have relative higher amounts of minerals than fresh meat but their relative solubility were lower. Aflatoxin levels far exceeded established safe limits for commercial samples while laboratory samples fell under the safe limits, resulting from the mould growth in each product, with laboratory samples having lower growth than commercial samples.展开更多
Interpretation, either consecutive or simultaneous, demands more advanced linguistic skills as well as higher cognitive strategies than translation. This paper investigates the characteristics of the notes taken by st...Interpretation, either consecutive or simultaneous, demands more advanced linguistic skills as well as higher cognitive strategies than translation. This paper investigates the characteristics of the notes taken by student interpreters in relation to the output and the process of interpretation with the purpsoe of identifying the role of note-taking in the process of interpretation, its relations with the production quality, and the factors that constrain the development of the students' potential as future interpreters. Statistical and qualitative analysis of the notes and think-aloud protocol reveals that students majoring in English should further improve their overall English proficiency. Note-taking, either in source language or target language, or both, should be practiced until students are able to use it expertly. Inspite of the importance of note-taking in interpretation, students should be trained to rely more on memory rather than solely on the notes.展开更多
Rotifers are considered as one of the most important prey organisms in the culture of altricial fish larvae. However, high density rotifer culture is often problematic due to water quality problems which results in fr...Rotifers are considered as one of the most important prey organisms in the culture of altricial fish larvae. However, high density rotifer culture is often problematic due to water quality problems which results in frequent crashes. In the present study, the performance of a small-scale, continuous system was evaluated for culturing rotifers, Brachionus plicatilis, using concentrated nonviable green algae, Nannochloropsis oculeataas feed in a 160 L tank for a period of 90 days. The system configuration was simple and major components consisted of a protein skimmer and a pure oxygen delivery system. Although egg ratio increased from 3% on day 1 to 21.8% and 39.3% on days 7 and 9, respectively, rotifer growth was slow at start up and resulted in fluctuations in total number of rotifers between days 19-41. Rotifer densities remained 〈 400 until day 51 but increased at higher rates reaching 900 individuals/mL on day 55, 1,620 on day 60 and 2,127 on day 70. Rotifer density reached a maximum of 2,188 individuals/mL on day 85. Once the rotifer density exceeded 1,500 individuals/mL (day 60), periodical harvesting (a total of 16 harvest events) produced a total of 369,920,000 rotifers corresponding to a daily production of 12,330,667 individuals/day during the next 30 days until the experiment was terminated at day 90. As a result of periodic harvesting, water makeup and continuous protein skimming, total settleable solids and NH3-N levels remained low and ranged between 4-22 mL/L and 0.4-2.2 mg/L, respectively. The authors' findings indicated that this inexpensive culture system can be successfully used for small-scale marine or freshwater ornamental fish production. Further work is required to minimize lag period at start-up and increase the production potential and yield by better management of suspended solids.展开更多
Water and agriculture are interlinked: water is indispensable for agricultural production and agricultural production results in emissions of nutrients and other substances to surfacewater and groundwater. However, n...Water and agriculture are interlinked: water is indispensable for agricultural production and agricultural production results in emissions of nutrients and other substances to surfacewater and groundwater. However, not only in physical terms are water and agriculture interlinked, there are also strong links between water and agricultural policies. This paper focuses on European National Policies on water and agriculture. Agricultural practices are primarily regulated by European Agricultural Policies, such as the Nitrate Directive, Directive 2009/128/EC on sustainable use of pesticides and the Common Agricultural Policies. The achievement of the objectives for nutrients and pesticides of European water related policies, such as the Drinking Water Directive and the Water Framework Directive, depends on agricultural practices. Therefore, for an effective and efficient implementation of sustainable policies on both agriculture and water, it is necessary to make sure that the targets and instruments of the two policy areas are properly aligned. Current practices show that this is not yet the case; so, there is room for improvement. This paper highlights steps needed to improve cooperation between these two policy domains and discusses first steps already taken at the European level. In addition, some examples of Dutch National Initiatives resulting from a dialogue between farmers and water managers with the aim of combining the objectives of water and agricultural policies and interests are presented.展开更多
This study aims at identifying possible correlations between shapes, types of geophysical anomalies and borehole productivity according to geological and hydrogeotogical contexts. The methodology adopted was a two-pro...This study aims at identifying possible correlations between shapes, types of geophysical anomalies and borehole productivity according to geological and hydrogeotogical contexts. The methodology adopted was a two-pronged one--the first step sought to: (1) interpret the electrical resistivity values from horizontal profiling and vertical electrical sounding implemented in Seno province that preceded the drilling of 513 boreholes; (ii) interpret data from pumping tests carried out on boreholes having a discharge superior to 1 m3/h ("positive borehole") by using Cooper-Jacob's method. In the second step, according to geology, authors tried to identify possible correlations between each of the qualitative geophysical parameters: ~shape of anomaly〉〉, tttype of anomaly〉〉 and ~〈type curve〉〉 on the one hand, and hydrogeological parameters such as discharge, alteration thickness, transmissivity and saturated level on the other. The results of this study have shown that the chances of having a positive borehole in Seno province are higher when the type of anomaly is TCC (80%), shape of anomaly is "W" and when type curve is "H" (80%) for all geological formations. Granitic formations are those that record higher discharges while schists record high transmissivity values.展开更多
The present study was designed to test the intra-specific crossing of two Egyptian populations from African catfish (Clarias gariepinus), EI-Manzalah catfish (MCF) characterized by tolerates for poor water quality...The present study was designed to test the intra-specific crossing of two Egyptian populations from African catfish (Clarias gariepinus), EI-Manzalah catfish (MCF) characterized by tolerates for poor water quality and easily farmed in captivity and EI-Qanater catfish (QCF) characterized by rapid growth and high quality flesh, for hybrid vigor, production and food processing to create new high quality products. Crosses of these populations were carried out in EI-Gamalia hatchery, EI-Manzalah, Egypt, during spring of 2008 between MCF~~ QCF~. African catfish hybrid, MCF and QCF fingerlings with a mean weight of 24.02 + 1.38 g were stocked at a density of 50-fish per m3 in cages (112 m3 each) suspended in lake El-Manzalah. Fish were fed a formulated diet containing 31.20% crude protein and cultured for 214 days. The growth, survival and production data confirmed that catfish hybrid has been successful and showed a strong heterotic effect. Hybrid catfish had a significantly highest production, 47.5 kg per m3 and best feed conversion ratio (1.33) which demonstrates that cages are a viable alternative to ponds for the commercial production of African catfish and its hybrids. Recently, the African catfish market has required more processed products. The results indicated that: (1) there are slightly variations in African catfish population's products quality; and (2) the hot-smoked and fried-coated fish fillets products are more safe foods and acceptable to consumers due to their physic-chemical properties and microbial load acceptable results.展开更多
Global vegetation photosynthesis and productivity have increased substantially since the 1980s,but this trend is heterogeneous in both time and space.Here,we categorize the secular trend in global vegetation greenness...Global vegetation photosynthesis and productivity have increased substantially since the 1980s,but this trend is heterogeneous in both time and space.Here,we categorize the secular trend in global vegetation greenness into sustained greening,sustained browning and greening-to-browning.We found that by 2016,increased global vegetation greenness had begun to level off,with the area of browning increasing in the last decade,reaching 39.0 million km^(2)(35.9%of the world’s vegetated area).This area is larger than the area with sustained increasing growth(27.8 million km^(2),26.4%);thus,12.0%±3.1%(0.019±0.004 NDVI a^(-1))of the previous earlier increase has been offset since 2010(2010–2016,P<0.05).Global gross primary production also leveled off,following the trend in vegetation greenness in time and space.This leveling off was caused by increasing soil water limitations due to the spatial expansion of drought,whose impact dominated over the impacts of temperature and solar radiation.This response of global gross primary production to soil water limitation was not identified by land submodels within Earth system models.Our results provide empirical evidence that global vegetation greenness and primary production are offset by water stress and suggest that as global warming continues,land submodels may overestimate the world’s capacity to take up carbon with global vegetation greening.展开更多
A scalable method for graphene and few-layer graphene (FLG) production by graphite delamination in aqueous solutions of the nonionic surfactant TWEEN 80 (TW80) using stirred-media mills is presented. Delaminated p...A scalable method for graphene and few-layer graphene (FLG) production by graphite delamination in aqueous solutions of the nonionic surfactant TWEEN 80 (TW80) using stirred-media mills is presented. Delaminated product analysis using statistical Raman spectroscopy yielded extensive processing-structure-property relationships that revealed how stress intensity and specific energy input, i.e., the process parameters, govern the yield of graphene production and defect formation. The dispersed carbon concentration increased but the content and the quality of the FLG product decreased sharply with higher specific energy input. The FLG content of the product was up to 90%, especially for low specific energy input. Moreover, Raman analyses revealed that stress intensities greater than about I nJ were related to significant defect formation in the product particles. Another key parameter for graphene production is solvent viscosity. The FLG concentration in the product increased by a factor of 10 when the solvent's viscosity was increased from 1 to 6 mPa-s because shear- and friction-induced delamination was enhanced and in-plane fracture was reduced due to dampening of bead motion. Based on the processing-structure-property relationships found, we propose that the delamination process can be designed in such way that the product consists, almost totally, of FLG and that single-layer graphene is produced. The scalability of graphene production by stirred-media delamination was demonstrated when an increase in the batch size from 0.2 to 2 L had no significant effect on product quality.展开更多
文摘The fourth new farming model Fenlong is identified as megascience for the first time. Fenlong can be directly applied to farming of farmland, remoulding of mortar black soil and saline alkali land and development of degraded grassland. Deep loosening can create huge soil reservoirs, reduce fertilization, promote indi- rectly the improvement of river water fisheries and water sources and the upgrading of shaping and hydropower industry, thus making a new round of mobilization and pooling of natural resources. As a result, the nature is able to produce good food needed by human, the spatial dimension of the land is increased, the natural pre- cipitation storage is increased, the flood and drought disasters are reduced, the eco-environment is improved, and the economic benefits are increased. Fenlong is not restricted to global application by ecological region and crop variety and is not subject to the time-space constraints for a hundred thousand years. On the basis of utilizing the heaven and earth resources, it brings about a huge effect of mega- science. Compare with traditional farming, the depth under the mode of Fenlong is increased by 2-3 times, the contents of nutrient, water, oxygen and microorganism in the soil are increased by 10%-200%, the content of pale salt is increased by 20%-40%, the temperature is increased by 2-4 ~C, and the photosynthetic efficiency of crops is improved by 10%. Under the cultivation mode of Fenlong, the yield of crop applied with no fertilizers is increased by more than 10%, crop yield is still in- creased by more than 5% when the application amount of chemical fertilizer is re- duced by 10%-20%. Under the farming mode of Fenlong combined with no in- crease in fertilization, the crop yield, crop quality, farming efficiency, natural precipi- tation storage and air humidity are increased by 10%-50%, 5%, 15%, 100% and 5%, respectively, and the emissions of methane and other gases are reduced by more than 5%. Even in mortar black soil, saline alkali land and degraded grassland, the yield is still increased by 15%-50%. These improvement effects can last for many years, helping achieve the real harmonious coexistence between human and nature.
基金Supported by the National Key Technology R&D Program of China(2014BAD06B05)the Major Project of Science and Technology of Guangxi(2017AA22015)~~
文摘The basic theory and effect of the new farming method of "Fenlong" cultivation which has been included in the main extension technology of Ministry of Agriculture of the People's Republic of China is fully illustrated for the first time, and it is the fourth set (generation) of farming modes and methods following manpower, animal and mechanical (tractor) farming. It follows the natural law to achieve soil activation, water saving, oxygen increase, warming and desalination through the active use of natural resources like soil, rainfall and solar energy, thereby promoting a new round of natural agricultural production and quality improvement and water con- servation, which has crop yield increase by 10%-30%, quality improvement of 5%, natural precipitation retaining increase by100%. The characteristics and mechanism are the use of spiral drill for one-time completion of the land preparation by drilling vertically to 30-50 cm of soil layer through high speed peeling. After instant high temperature and many fierce impacts, mechanical frictions, it could achieve the multiplication of the number of loose soil, soil physical modification and expansion of the soil nutrients, reservoirs, oxygen, microorganisms ("Four pools"). Fenlong cultivation can give birth to new farming culture and civilization, and it can achieve the physical "desalinized" transformation and utilization of saline soil. The formation of Fenlong green farming technology system makes it possible to invent the farming tools of "serf-propelled Fenlong machinery" that has got the patent, and it is the method for farmland (dry land, paddy field) Fenlong cultivation, saline-alkali soil smash-ridging cultivation and for the abundance of grass ecology on degraded grassland. The application of Fenlong "4+1" (arable, saline-alkali soil, grasslands, Sponge City+rivers) green development in China can achieve the "double safety" of food and living space.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (No. 2006AA100305)National Agricultural Science and Technology Achievements Commercialization Program (No. 2008GB2C100109)the Knowledge Innovation Program of Institute of Oceanology, Chinese Academy of Sciences (No. L49032503)
文摘We evaluated the dietary protein requirements of juvenile turbot (Scophthalmus maximus L.) and their effects on aquatic quality. Five experimental diets were formulated containing 450, 480, 500, 520, and 540 g/kg. Each diet was randomly assigned to triplicate groups of juvenile turbot (mean initial body weight 34.5 ± 5.5 g) for 88 d. Both the weight gain ratio and feed efficiency increased with increasing dietary protein up to 500 g/kg, but no further improvement was detected when dietary protein levels were >500 g/kg. Protein intake and digestion increased with protein levels, while fecal nitrogen and nitrogen content in seawater increased only when dietary protein exceeded 500 g/kg. Protein digestibility was highest at intermediate dietary protein levels. Chemical oxygen demand, nitrite-nitrogen (NO2--N) and phosphatic-phosphor (PO43--P) levels increased in the rearing water as dietary protein levels increased. The optimum eco-nutrition level of dietary protein for juvenile turbot was 500 g/kg under the current experimental conditions. The diets containing 540 and 500 g/kg protein had similar growth rates and feed conversion ratios, but levels of ammonia (NH4+) and nitrogen were considerably higher in the water and feces, respectively, at the higher level of dietary protein. The difference in the pattern of change between body weight gain and ammonia concentration in water with increasing dietary protein is described by rhomb characteristics.
文摘Developments along the Santubong River basin may have an impact on the aquatic ecosystem. To determine the impacts of activities on the water quality, ten stations were selected for water quality study over 9 months. Results show that salinity increases from 14.0 PSU upstream to 30.4 PSU downstream. Lowest DO range was 2.3-4.1 mg/L. TSS ranged was 20-135 mg/L and the highest was observed near construction and residential areas, the second and third highest near shrimp culture discharge areas. BOD5 was the highest near construction and residential areas. BOD5 of a station near shrimp culture was not significantly different from the residential areas. Two stations near shrimp culture site also recorded the highest Chl-a. The highest ammonia-nitrogen, nitrite-nitrogen and reactive phosphorus were observed at stations near shrimp farm sites whereas nitrate-nitrogen was the highest near construction and residential areas. Cage culture site showed the highest phosphorus and second highest nitrite-nitrogen and ammonia-nitrogen. This study showed that TSS and BOD5 were elevated near residential and construction areas and nutrients were elevated near shrimp farm sites resulting in algal bloom. Therefore, it is recommended that residential and shrimp farm discharge be treated to acceptable quality before discharge to protect the aquatic resources.
基金Under the auspices of National Aeronautics and Space Administration of US(NASA)(No.NNG06GA92G)National Natural Science Foundation of China(No.41171293)
文摘This study examined the spatiotemporal dynamics of colored dissolved organic matter (CDOM) and spectral slope (S), and further to analyze its sources in three productive water supplies (Eagle Creek, Geist and Morse reservoirs) from Indiana, USA. The re- sults showed that he absorption coefficient aCDOM(440) ranged from 0.37 m-1 to 3.93 m-1 with an average of 1.89 ± 0.76 m-1 (±SD) for the aggregated dataset, and S varied from 0.0048 nm -1 to 0.0239 nm-1 with an average of 0.0108 ±0.0040 nmI. A significant relation- ship between S and aCDOM(440) can be fitted with a power equation (S = 0.013 × aCDOM(440)-0.42, R2 = 0.612), excluding data from Geist Reservoir during high flow (12 April 2010) and the Morse Reservoir on 25 June 2010 due to a T-storm achieves even higher determina- tion coefficient (R2 = 0.842). Correlation analysis indicated that aCDOM(440) has strong association with inorganic suspended matter (ISM) concentration (0.231 〈 R2 〈 0.786) for each of the field surveys, and this trend followed the aggregated datasets (R2 = 0.447, p 〈 0.001). In contrast, chlorophyll-a was only correlated with aCDOM(440) in summer and autumn (0.081 〈 R2 〈 0.763), indicating that CDOM is mainly from terrigenous sources in early spring and that phytoplankton contributed during the algal blooming season. The S value was used to characterize CDOM origin. The results indicate that the CDOM source is mainly controlled by hydrological varia- tions, while phytoplankton originated organic matter also closely linked with CDOM dynamics in three productive reservoirs.
文摘Tomato seedlings were grown in substrate culture with pots. The formulation of Holland Greenhouse Horticulture Research Institute was used(as CK) and the effects of different Ca concentrations(LCa, CK and HCa)on growth, yield, and fruit quality(protein, Vitamin C, nitrates, organic acid and soluble sugar) of tomato were studied keeping concentrations of other nutrients unchanged in the nutrient solution. The results showed that parameters related to the growth of tomato(plant height and Stem diameter), changes of tomato yield per plant and quality of tomato fruits were the highest when the plants were grown at 20% Ca treatments. In the second study, increased EC concentrations of nutrient solution resulted in stronger plants with improved yields and quality. Four different concentration gradients of nutrient solution treatment were designed based on the results of the first research stage(EC=1.5, 2.5, 3.5, 4.5 m S/cm, respectively). The single tomato plant had the highest production which is 2 268.994 g/plant, when the nutrient solution strength was at EC=1.5 m S cm, whereas they have the best fruit quality when the solution strength at EC 4.5 m S/cm. This suggests the need for wide popularization of the nutrient solution formula in large areas to improve the tomato production.
基金Project(40971170) supported by the National Natural Science Foundation of ChinaProject(NCET-09-330) supported by the Program for New Century Excellent Talents in University of China
文摘The effects of soil and water conservation (SWC) on soil properties are well documented. However, definitive and quantitative information of SWC and its interactions with soil properties on soil productivity is lacking for hilly red soil region of southern China. Experiments were conducted in the hilly red soil region of southern China for seven years in three rtmoffplots, each of which represented different SWC forest-grass measures. Principal component analysis and multiple regression techniques were used to relate the aboveground biomass (representing soil productivity) to soil properties. Based on the final regression equations, soil organic carbon content (Sot) is significantly correlated with soil productivity under the condition of forest-grass measures, whereas pH value and cation exchange capacity (Cee) are the main factors for soil productivity without SWC. Therefore, SWC plays an important role in sequestering Soc and improving soil productivity.
文摘Guneshli is a unique oil field for.its huge oil reserves. Fasila layer is one of the main productive series with more than 3,300 tons of oil production per year. It is an important task to continue efficently develop this object. Development of Fasila was analysed based on geological-mathematical models, production performance was predicted through use of advanced "evolution" modeling program. In addition, the impact of water injection from deep water Guneshly was identified and relavant proposals were put forward.
基金Under the auspices of National Natural Science Foundation of China(No.41371538)Independent Project of State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences(No.SKLURE2008-1-02)
文摘River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help in developing an effective catchment management strategy to protect precious water resources. This study analyzed river water quality, patterns of terrestrial and riparian ecosystems, intensity of agricultural activities, industrial structure, and spatial distribution of pollutant emissions in the Haihe River Basin in China for the year of 2010, identifying the variables that have the greatest impact on river water quality. The area percentage of farmland in study area, the percentage of natural vegetation cover in the 1000-m riparian zone, rural population density, industrial Gross Domestic Product(GDP)/km^2, and industrial amino nitrogen emissions were all significantly correlated with river water quality(P < 0.05). Farming had the largest impact on river water quality, explaining 43.0% of the water quality variance, followed by the coverage of natural vegetation in the 1000-m riparian zone, which explained 36.2% of the water quality variance. Industrial amino nitrogen emissions intensity and rural population density explained 31.6% and 31.4% of the water quality variance, respectively, while industrial GDP/km^2 explained 26.6%. Together, these five indicators explained 67.3% of the total variance in water quality. Consequently, water environmental management of the Haihe River Basin should focus on adjusting agricultural activities, conserving riparian vegetation, and reducing industrial pollutant emissions by optimizing industrial structure. The results demonstrate how human activities drive the spatial pattern changes of river water quality, and they can provide reference for developing land use guidelines and for prioritizing management practices to maintain stream water quality in a large river basin.
文摘Meat and meat products are extremely perishable, so special care and handling must be exercised during slaughtering operation. Moreover, due to its high nutritive value, deterioration set in immediately after slaughtered, therefore it is necessary to preserved meat, using simple techniques. One of such method of preservation is drying method to produced Intermediate Moisture Meat (IMM). The quality attributes and microbiological status of Kundi, a West African dried meat product (IMM) were studied over three months of storage period by comparing commercial products and laboratory Kundi products. Chemical and minerals composition and microbiological counts were reported. Moisture and water activity results indicated that the experimental Kundi was sufficiently dried to minimize microbial growth. Fat oxidation levels measured by free fatty acids (FFA, %) on extracted fats were unacceptably high for the commercial Kundi (2.64%), which may be a reflection of the oil used in spraying the products. Processing of Kundi, appears to have relative higher amounts of minerals than fresh meat but their relative solubility were lower. Aflatoxin levels far exceeded established safe limits for commercial samples while laboratory samples fell under the safe limits, resulting from the mould growth in each product, with laboratory samples having lower growth than commercial samples.
文摘Interpretation, either consecutive or simultaneous, demands more advanced linguistic skills as well as higher cognitive strategies than translation. This paper investigates the characteristics of the notes taken by student interpreters in relation to the output and the process of interpretation with the purpsoe of identifying the role of note-taking in the process of interpretation, its relations with the production quality, and the factors that constrain the development of the students' potential as future interpreters. Statistical and qualitative analysis of the notes and think-aloud protocol reveals that students majoring in English should further improve their overall English proficiency. Note-taking, either in source language or target language, or both, should be practiced until students are able to use it expertly. Inspite of the importance of note-taking in interpretation, students should be trained to rely more on memory rather than solely on the notes.
文摘Rotifers are considered as one of the most important prey organisms in the culture of altricial fish larvae. However, high density rotifer culture is often problematic due to water quality problems which results in frequent crashes. In the present study, the performance of a small-scale, continuous system was evaluated for culturing rotifers, Brachionus plicatilis, using concentrated nonviable green algae, Nannochloropsis oculeataas feed in a 160 L tank for a period of 90 days. The system configuration was simple and major components consisted of a protein skimmer and a pure oxygen delivery system. Although egg ratio increased from 3% on day 1 to 21.8% and 39.3% on days 7 and 9, respectively, rotifer growth was slow at start up and resulted in fluctuations in total number of rotifers between days 19-41. Rotifer densities remained 〈 400 until day 51 but increased at higher rates reaching 900 individuals/mL on day 55, 1,620 on day 60 and 2,127 on day 70. Rotifer density reached a maximum of 2,188 individuals/mL on day 85. Once the rotifer density exceeded 1,500 individuals/mL (day 60), periodical harvesting (a total of 16 harvest events) produced a total of 369,920,000 rotifers corresponding to a daily production of 12,330,667 individuals/day during the next 30 days until the experiment was terminated at day 90. As a result of periodic harvesting, water makeup and continuous protein skimming, total settleable solids and NH3-N levels remained low and ranged between 4-22 mL/L and 0.4-2.2 mg/L, respectively. The authors' findings indicated that this inexpensive culture system can be successfully used for small-scale marine or freshwater ornamental fish production. Further work is required to minimize lag period at start-up and increase the production potential and yield by better management of suspended solids.
文摘Water and agriculture are interlinked: water is indispensable for agricultural production and agricultural production results in emissions of nutrients and other substances to surfacewater and groundwater. However, not only in physical terms are water and agriculture interlinked, there are also strong links between water and agricultural policies. This paper focuses on European National Policies on water and agriculture. Agricultural practices are primarily regulated by European Agricultural Policies, such as the Nitrate Directive, Directive 2009/128/EC on sustainable use of pesticides and the Common Agricultural Policies. The achievement of the objectives for nutrients and pesticides of European water related policies, such as the Drinking Water Directive and the Water Framework Directive, depends on agricultural practices. Therefore, for an effective and efficient implementation of sustainable policies on both agriculture and water, it is necessary to make sure that the targets and instruments of the two policy areas are properly aligned. Current practices show that this is not yet the case; so, there is room for improvement. This paper highlights steps needed to improve cooperation between these two policy domains and discusses first steps already taken at the European level. In addition, some examples of Dutch National Initiatives resulting from a dialogue between farmers and water managers with the aim of combining the objectives of water and agricultural policies and interests are presented.
文摘This study aims at identifying possible correlations between shapes, types of geophysical anomalies and borehole productivity according to geological and hydrogeotogical contexts. The methodology adopted was a two-pronged one--the first step sought to: (1) interpret the electrical resistivity values from horizontal profiling and vertical electrical sounding implemented in Seno province that preceded the drilling of 513 boreholes; (ii) interpret data from pumping tests carried out on boreholes having a discharge superior to 1 m3/h ("positive borehole") by using Cooper-Jacob's method. In the second step, according to geology, authors tried to identify possible correlations between each of the qualitative geophysical parameters: ~shape of anomaly〉〉, tttype of anomaly〉〉 and ~〈type curve〉〉 on the one hand, and hydrogeological parameters such as discharge, alteration thickness, transmissivity and saturated level on the other. The results of this study have shown that the chances of having a positive borehole in Seno province are higher when the type of anomaly is TCC (80%), shape of anomaly is "W" and when type curve is "H" (80%) for all geological formations. Granitic formations are those that record higher discharges while schists record high transmissivity values.
文摘The present study was designed to test the intra-specific crossing of two Egyptian populations from African catfish (Clarias gariepinus), EI-Manzalah catfish (MCF) characterized by tolerates for poor water quality and easily farmed in captivity and EI-Qanater catfish (QCF) characterized by rapid growth and high quality flesh, for hybrid vigor, production and food processing to create new high quality products. Crosses of these populations were carried out in EI-Gamalia hatchery, EI-Manzalah, Egypt, during spring of 2008 between MCF~~ QCF~. African catfish hybrid, MCF and QCF fingerlings with a mean weight of 24.02 + 1.38 g were stocked at a density of 50-fish per m3 in cages (112 m3 each) suspended in lake El-Manzalah. Fish were fed a formulated diet containing 31.20% crude protein and cultured for 214 days. The growth, survival and production data confirmed that catfish hybrid has been successful and showed a strong heterotic effect. Hybrid catfish had a significantly highest production, 47.5 kg per m3 and best feed conversion ratio (1.33) which demonstrates that cages are a viable alternative to ponds for the commercial production of African catfish and its hybrids. Recently, the African catfish market has required more processed products. The results indicated that: (1) there are slightly variations in African catfish population's products quality; and (2) the hot-smoked and fried-coated fish fillets products are more safe foods and acceptable to consumers due to their physic-chemical properties and microbial load acceptable results.
基金the National Key Research and Development Program of China(2017YFA0604700)the National Natural Science Foundation of China(41722104)+3 种基金the Key Research Project of Chinese Academy of Sciences(QYZDY-SSWDQC025 and 2019DC0027)supported by the European Research Council Synergy(ERC-2013-Sy G-610028 IMBALANCE-P)the Spanish Government(CGL2016-79835)the Catalan Government(SGR 2017-1005)。
文摘Global vegetation photosynthesis and productivity have increased substantially since the 1980s,but this trend is heterogeneous in both time and space.Here,we categorize the secular trend in global vegetation greenness into sustained greening,sustained browning and greening-to-browning.We found that by 2016,increased global vegetation greenness had begun to level off,with the area of browning increasing in the last decade,reaching 39.0 million km^(2)(35.9%of the world’s vegetated area).This area is larger than the area with sustained increasing growth(27.8 million km^(2),26.4%);thus,12.0%±3.1%(0.019±0.004 NDVI a^(-1))of the previous earlier increase has been offset since 2010(2010–2016,P<0.05).Global gross primary production also leveled off,following the trend in vegetation greenness in time and space.This leveling off was caused by increasing soil water limitations due to the spatial expansion of drought,whose impact dominated over the impacts of temperature and solar radiation.This response of global gross primary production to soil water limitation was not identified by land submodels within Earth system models.Our results provide empirical evidence that global vegetation greenness and primary production are offset by water stress and suggest that as global warming continues,land submodels may overestimate the world’s capacity to take up carbon with global vegetation greening.
基金This work was supported financially by the German Science Foundation (DFG), Collaborative Research Centre SFB953: "Synthetic Carbon Allotropes'. The authors would like to thank S. Romeis and C. Konnerth for interesting and profound discussions
文摘A scalable method for graphene and few-layer graphene (FLG) production by graphite delamination in aqueous solutions of the nonionic surfactant TWEEN 80 (TW80) using stirred-media mills is presented. Delaminated product analysis using statistical Raman spectroscopy yielded extensive processing-structure-property relationships that revealed how stress intensity and specific energy input, i.e., the process parameters, govern the yield of graphene production and defect formation. The dispersed carbon concentration increased but the content and the quality of the FLG product decreased sharply with higher specific energy input. The FLG content of the product was up to 90%, especially for low specific energy input. Moreover, Raman analyses revealed that stress intensities greater than about I nJ were related to significant defect formation in the product particles. Another key parameter for graphene production is solvent viscosity. The FLG concentration in the product increased by a factor of 10 when the solvent's viscosity was increased from 1 to 6 mPa-s because shear- and friction-induced delamination was enhanced and in-plane fracture was reduced due to dampening of bead motion. Based on the processing-structure-property relationships found, we propose that the delamination process can be designed in such way that the product consists, almost totally, of FLG and that single-layer graphene is produced. The scalability of graphene production by stirred-media delamination was demonstrated when an increase in the batch size from 0.2 to 2 L had no significant effect on product quality.