根据中国城市能耗特点,提出将城市能耗分为生产性能耗和消费性能耗两大类型。指出生产性能耗主要用效率指标来评价;消费性能耗应尽量用实物量指标来评价,也就是用量化的强度性指标EUI(energy use intensity)评价,实现评价指标的可测量...根据中国城市能耗特点,提出将城市能耗分为生产性能耗和消费性能耗两大类型。指出生产性能耗主要用效率指标来评价;消费性能耗应尽量用实物量指标来评价,也就是用量化的强度性指标EUI(energy use intensity)评价,实现评价指标的可测量、可核查、可报告。即使采用相对性指标(如百分比指标),也一定要有明确的基准线。提出了城市生产性能耗、消费性能耗以及城市能源系统的关键性能指标。展开更多
The rates at which birds use energy may have profound effects on fitness, thereby influencing physiology, behavior, ecology and evolution. Comparisons of standardized metabolic rates (e.g., lower and upper limits of ...The rates at which birds use energy may have profound effects on fitness, thereby influencing physiology, behavior, ecology and evolution. Comparisons of standardized metabolic rates (e.g., lower and upper limits of metabolic power output) present a method for elucidating the effects of ecological and evolutionary factors on the interface between physiology and life history in birds. In this paper we review variation in avian metabolic rates [basal metabolic rate (BMR; minimum normothermic metabolic rate), summit metabolic rate (Msum; maximal thermoregulatory metabolic rate), and maximal metabolic rate (MMR; maximal exercise metabolic rate)], the factors associated with this variation, the evidence for functional links between these metabolic traits, and the ecological and evolutionary significance of avian metabolic diversity. Both lower and upper limits to metabolic power production are phenotypically flexible traits, and vary in association with numerous ecological and evolutionary factors. For both inter- and intraspecific comparisons, lower and upper limits to metabolic power production are generally upregulated in response to energetically demanding conditions and downregulated when energetic demands are relaxed, or under conditions of energetic scarcity. Positive correlations have been documented between BMR, Msum and MMR in some, but not all studies on birds, providing partial support for the idea of a functional link between lower and upper limits to metabolic power production, but more intraspecific studies are needed to determine the robustness of this conclusion. Correlations between BMR and field metabolic rate (or daily energy expenditure) in birds are variable, suggesting that the linkage between these traits is subject to behavioral adjustment, and studies of the relationship between field and maximal metabolic rates are lacking. Our understanding of avian metabolic diversity would benefit from future studies of: (1) the functional and mechanistic links between lower and upper limits of metabolic power output; (2) the environmental and ecological cues driving phenotypically flexible metabolic responses, and how responses to such cues might impact population responses to climate change; (3) the shapes of metabolic reaction norms and their association with environmental variability; and (4) the relationship of metabolic variation to fitness, including studies of repeatability and heritability of minimum and maximum metabolic power output [Current Zoology 56 (6): 741-758, 2010].展开更多
This paper emphasizes some of the challenges and trends associated with the future development of marine structures. Its main focus is on ways to improve the efficiency of energy-consuming ships, and on design challen...This paper emphasizes some of the challenges and trends associated with the future development of marine structures. Its main focus is on ways to improve the efficiency of energy-consuming ships, and on design challenges related to energy-producing offshore structures. This paper also discusses the analysis tools that are most needed to enable sustainable designs for future ships and offshore structures. The last section of the paper contains thoughts on the role of universities in education, research, and innovation regarding marine structures. It discusses curriculum requirements for maritime-technology education, basic research activities, and international cooperation.展开更多
To quantify the energy consumption in the process of production, transportation and processing of energy carriers, the life cycle of building energy used can be divided into two phases: on-site phase and embodied pha...To quantify the energy consumption in the process of production, transportation and processing of energy carriers, the life cycle of building energy used can be divided into two phases: on-site phase and embodied phase. As for the embodied phase, with the data in existing statistic yearbook, the consumption items of energy production and transportation were investigated. And based on the life cycle theory, an embodied coefficient of energy carriers was proposed to quantify the embodied energy consumption. Moreover, a calculation method for the embodied coefficient of energy carriers was deduced using Leontief inverse matrix based on the existing data sources. With relevant data of 2005-2007 in China, the embodied coefficients in 2005-2007 were obtained, in which the values for natural gas and thermal power are around 1.3 and 3. l, respectively; while they are 1.03-1.08 for other selected energy carriers. In addition, it is also found that the consumption in the production and processing accounts for more than 75%.展开更多
A fundamental element of sustainable development is that humans live within nature's biological capacity. Quantifying this, however, remains a significant challenge for which there are many emerging tools. The con...A fundamental element of sustainable development is that humans live within nature's biological capacity. Quantifying this, however, remains a significant challenge for which there are many emerging tools. The concept of the Ecological Footprint is one such accounting tool for comprehensive assessment of the status of sustainable development, based on integration of resource consumption and land capacity, reflecting the human impact on the environment. A region's development is defined as unsustainable when the Ecological Footprint surpasses the biological capacity. In this paper, the Ecological Footprint concept was applied in assessing the development of Yunnan Province, China in a period between 1988 and 2006. The results showed that the Ecological Footprint per capita in Yunnan rose from 0.854 gha in 1988 to 2.11 gha in 2006. Ecological deficit, defined as when the human demand on the land surpasses the regions biological productive capacity, emerged in 1991 and quickly increased from 0.02 gha in 1991 to 1.05 gha in 2006. The increase in the ecological deficit is primarily a result of the rapid increase in population and consumption level. To achieve sustainable development in Yunnan, production and consumption rates need to be modified.展开更多
文摘根据中国城市能耗特点,提出将城市能耗分为生产性能耗和消费性能耗两大类型。指出生产性能耗主要用效率指标来评价;消费性能耗应尽量用实物量指标来评价,也就是用量化的强度性指标EUI(energy use intensity)评价,实现评价指标的可测量、可核查、可报告。即使采用相对性指标(如百分比指标),也一定要有明确的基准线。提出了城市生产性能耗、消费性能耗以及城市能源系统的关键性能指标。
文摘The rates at which birds use energy may have profound effects on fitness, thereby influencing physiology, behavior, ecology and evolution. Comparisons of standardized metabolic rates (e.g., lower and upper limits of metabolic power output) present a method for elucidating the effects of ecological and evolutionary factors on the interface between physiology and life history in birds. In this paper we review variation in avian metabolic rates [basal metabolic rate (BMR; minimum normothermic metabolic rate), summit metabolic rate (Msum; maximal thermoregulatory metabolic rate), and maximal metabolic rate (MMR; maximal exercise metabolic rate)], the factors associated with this variation, the evidence for functional links between these metabolic traits, and the ecological and evolutionary significance of avian metabolic diversity. Both lower and upper limits to metabolic power production are phenotypically flexible traits, and vary in association with numerous ecological and evolutionary factors. For both inter- and intraspecific comparisons, lower and upper limits to metabolic power production are generally upregulated in response to energetically demanding conditions and downregulated when energetic demands are relaxed, or under conditions of energetic scarcity. Positive correlations have been documented between BMR, Msum and MMR in some, but not all studies on birds, providing partial support for the idea of a functional link between lower and upper limits to metabolic power production, but more intraspecific studies are needed to determine the robustness of this conclusion. Correlations between BMR and field metabolic rate (or daily energy expenditure) in birds are variable, suggesting that the linkage between these traits is subject to behavioral adjustment, and studies of the relationship between field and maximal metabolic rates are lacking. Our understanding of avian metabolic diversity would benefit from future studies of: (1) the functional and mechanistic links between lower and upper limits of metabolic power output; (2) the environmental and ecological cues driving phenotypically flexible metabolic responses, and how responses to such cues might impact population responses to climate change; (3) the shapes of metabolic reaction norms and their association with environmental variability; and (4) the relationship of metabolic variation to fitness, including studies of repeatability and heritability of minimum and maximum metabolic power output [Current Zoology 56 (6): 741-758, 2010].
文摘This paper emphasizes some of the challenges and trends associated with the future development of marine structures. Its main focus is on ways to improve the efficiency of energy-consuming ships, and on design challenges related to energy-producing offshore structures. This paper also discusses the analysis tools that are most needed to enable sustainable designs for future ships and offshore structures. The last section of the paper contains thoughts on the role of universities in education, research, and innovation regarding marine structures. It discusses curriculum requirements for maritime-technology education, basic research activities, and international cooperation.
基金Project(CDJZR10210009) supported by Central College General Fund for Natural Science of Chongqing City,China
文摘To quantify the energy consumption in the process of production, transportation and processing of energy carriers, the life cycle of building energy used can be divided into two phases: on-site phase and embodied phase. As for the embodied phase, with the data in existing statistic yearbook, the consumption items of energy production and transportation were investigated. And based on the life cycle theory, an embodied coefficient of energy carriers was proposed to quantify the embodied energy consumption. Moreover, a calculation method for the embodied coefficient of energy carriers was deduced using Leontief inverse matrix based on the existing data sources. With relevant data of 2005-2007 in China, the embodied coefficients in 2005-2007 were obtained, in which the values for natural gas and thermal power are around 1.3 and 3. l, respectively; while they are 1.03-1.08 for other selected energy carriers. In addition, it is also found that the consumption in the production and processing accounts for more than 75%.
基金funded by the National Key Project for Basic Research of China (973), (Grant No.2003CB415100)
文摘A fundamental element of sustainable development is that humans live within nature's biological capacity. Quantifying this, however, remains a significant challenge for which there are many emerging tools. The concept of the Ecological Footprint is one such accounting tool for comprehensive assessment of the status of sustainable development, based on integration of resource consumption and land capacity, reflecting the human impact on the environment. A region's development is defined as unsustainable when the Ecological Footprint surpasses the biological capacity. In this paper, the Ecological Footprint concept was applied in assessing the development of Yunnan Province, China in a period between 1988 and 2006. The results showed that the Ecological Footprint per capita in Yunnan rose from 0.854 gha in 1988 to 2.11 gha in 2006. Ecological deficit, defined as when the human demand on the land surpasses the regions biological productive capacity, emerged in 1991 and quickly increased from 0.02 gha in 1991 to 1.05 gha in 2006. The increase in the ecological deficit is primarily a result of the rapid increase in population and consumption level. To achieve sustainable development in Yunnan, production and consumption rates need to be modified.