Aiming to minimize the total production costs in a single planning period, a nonlinear integer programming model for remanufacturing production plans is established considering the influence of different qualities of ...Aiming to minimize the total production costs in a single planning period, a nonlinear integer programming model for remanufacturing production plans is established considering the influence of different qualities of returns acting on production cost. Three different remanufacturing and discarding strategies are adopted to analyze the change rules of the total production costs. The results returns is greater than indicate that when the number of remanufacturing returns of high the demand, preferentially quality and discarding those of low quality can bring better economic benefits due to manufacturing cost reduction. However, when the number of returns is smaller than the demand, there is no need to consider grading of returns, whereas new demand of remanufacturing. parts are required to satisfy the展开更多
We evaluated the dietary protein requirements of juvenile turbot (Scophthalmus maximus L.) and their effects on aquatic quality. Five experimental diets were formulated containing 450, 480, 500, 520, and 540 g/kg. Eac...We evaluated the dietary protein requirements of juvenile turbot (Scophthalmus maximus L.) and their effects on aquatic quality. Five experimental diets were formulated containing 450, 480, 500, 520, and 540 g/kg. Each diet was randomly assigned to triplicate groups of juvenile turbot (mean initial body weight 34.5 ± 5.5 g) for 88 d. Both the weight gain ratio and feed efficiency increased with increasing dietary protein up to 500 g/kg, but no further improvement was detected when dietary protein levels were >500 g/kg. Protein intake and digestion increased with protein levels, while fecal nitrogen and nitrogen content in seawater increased only when dietary protein exceeded 500 g/kg. Protein digestibility was highest at intermediate dietary protein levels. Chemical oxygen demand, nitrite-nitrogen (NO2--N) and phosphatic-phosphor (PO43--P) levels increased in the rearing water as dietary protein levels increased. The optimum eco-nutrition level of dietary protein for juvenile turbot was 500 g/kg under the current experimental conditions. The diets containing 540 and 500 g/kg protein had similar growth rates and feed conversion ratios, but levels of ammonia (NH4+) and nitrogen were considerably higher in the water and feces, respectively, at the higher level of dietary protein. The difference in the pattern of change between body weight gain and ammonia concentration in water with increasing dietary protein is described by rhomb characteristics.展开更多
基金The National Natural Science Foundation of China(No.70671022)
文摘Aiming to minimize the total production costs in a single planning period, a nonlinear integer programming model for remanufacturing production plans is established considering the influence of different qualities of returns acting on production cost. Three different remanufacturing and discarding strategies are adopted to analyze the change rules of the total production costs. The results returns is greater than indicate that when the number of remanufacturing returns of high the demand, preferentially quality and discarding those of low quality can bring better economic benefits due to manufacturing cost reduction. However, when the number of returns is smaller than the demand, there is no need to consider grading of returns, whereas new demand of remanufacturing. parts are required to satisfy the
基金Supported by the National High Technology Research and Development Program of China (863 Program) (No. 2006AA100305)National Agricultural Science and Technology Achievements Commercialization Program (No. 2008GB2C100109)the Knowledge Innovation Program of Institute of Oceanology, Chinese Academy of Sciences (No. L49032503)
文摘We evaluated the dietary protein requirements of juvenile turbot (Scophthalmus maximus L.) and their effects on aquatic quality. Five experimental diets were formulated containing 450, 480, 500, 520, and 540 g/kg. Each diet was randomly assigned to triplicate groups of juvenile turbot (mean initial body weight 34.5 ± 5.5 g) for 88 d. Both the weight gain ratio and feed efficiency increased with increasing dietary protein up to 500 g/kg, but no further improvement was detected when dietary protein levels were >500 g/kg. Protein intake and digestion increased with protein levels, while fecal nitrogen and nitrogen content in seawater increased only when dietary protein exceeded 500 g/kg. Protein digestibility was highest at intermediate dietary protein levels. Chemical oxygen demand, nitrite-nitrogen (NO2--N) and phosphatic-phosphor (PO43--P) levels increased in the rearing water as dietary protein levels increased. The optimum eco-nutrition level of dietary protein for juvenile turbot was 500 g/kg under the current experimental conditions. The diets containing 540 and 500 g/kg protein had similar growth rates and feed conversion ratios, but levels of ammonia (NH4+) and nitrogen were considerably higher in the water and feces, respectively, at the higher level of dietary protein. The difference in the pattern of change between body weight gain and ammonia concentration in water with increasing dietary protein is described by rhomb characteristics.