The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and...The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt.These catalysts were characterized on the basis of elemental analysis,acidity site concentration,the Brunauer-Emmett-Teller(BET)surface area and pore size.The kinetic parameters with the two catalysts were determined,and the reaction system can be described as a pseudo homogeneous catalyzed reaction.All the forward and reverse reactions follow second order kinetics.The calculated concentration values from the kinetic equations are in good agreement with experimental values.展开更多
To obtain insight into the catalytic reaction mechanism of biodiesels over ZSM-5 zeolites,the pyrolysis and catalytic pyrolysis of methyl butanoate,a biodiesel surrogate,with H-type ZSM-5(HZSM-5)were performed in a fl...To obtain insight into the catalytic reaction mechanism of biodiesels over ZSM-5 zeolites,the pyrolysis and catalytic pyrolysis of methyl butanoate,a biodiesel surrogate,with H-type ZSM-5(HZSM-5)were performed in a flow rereac tor under atmospheric pressure.The pyrolysis products were identified and quantified using gas chroma to graphy-mass spec trome try(GC-MS).Kine tic modelling and experimental results revealed that H-atom abstraction in the gas phase was the primary pathway for methyl butanoate decomposition during pyrolysis,but dissociating to ketene and methanol over HZSM-5 was the primary pathway for methyl butanoate consumption during catalytic pyrolysis.The initial decomposition temperature of methyl butanoate was reduced by approximately 300 K over HZSM-5 compared to that for the uncatalyzed reaction.In addition,the apparent activation energies of methyl butanoate under catalytic pyrolysis and homogeneous pyrolysis conditions were obtained using the Arrhenius equation.The significantly reduced apparent activation energy confirmed the catalytic performance of HZSM-5 for methyl but anoa te pyrolysis.The act iva tion t empera ture may also affec t some catalytic proper ties of HZSM-5.Overall,this study can be used to guide subsequent catalytic combustion for practical biodiesel fuels.展开更多
A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By intr...A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By introducing the growth stress gradient we modify the classical oxidation parabolic law. The modified factor of the oxidation rate constant is a function of growth strain, environment oxygen concentration, and temperature. The modeling results show that the stress gradient effect on the oxidation rate cannot be ignored. Growth strain will dominate whether the stress gradient effect promotes or slows down the oxidation process. The stress gradient effect becomes weaker at higher temperature. This effect is amplified at higher concentrations of environmental oxygen. Applied mechanical loads do not affect the oxidation rate. This model is available for high temperature oxidation of metals and alloys.展开更多
The paper addresses the analysis of nonlinear dynamical models of some microbial growth processes. Equilibrium points, stability analysis, and structural properties are studied for different bioprocesses with various ...The paper addresses the analysis of nonlinear dynamical models of some microbial growth processes. Equilibrium points, stability analysis, and structural properties are studied for different bioprocesses with various kinetics structures. First, a simple micro- organism growth process on a single limiting substrate is widely analyzed. Second, a microbial growth process combined with an enzyme-catalyzed reaction is investigated. The analysis shows that these kinds of bioprocesses have multiple equilibria, stable or unstable, operational or non-operational. The partition of nonlinear model in linear and nonlinear parts via some structural properties leads to kinetic decoupling and facilitates the equilibria and stability analysis. The performed research is useful for model reduction and for the design of observers and control algorithms. To illustrate the study results, several numerical simulations are provided.展开更多
文摘The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt.These catalysts were characterized on the basis of elemental analysis,acidity site concentration,the Brunauer-Emmett-Teller(BET)surface area and pore size.The kinetic parameters with the two catalysts were determined,and the reaction system can be described as a pseudo homogeneous catalyzed reaction.All the forward and reverse reactions follow second order kinetics.The calculated concentration values from the kinetic equations are in good agreement with experimental values.
基金This work was supported by the National Natural Science Foundation of China(No.51676176 and No.51976207)the Fundamental Research Funds for the Central Universities(No.WK2320000038)the Foundation of State Key Laboratory of Coal Combustion(No.FSKLCCA1909).
文摘To obtain insight into the catalytic reaction mechanism of biodiesels over ZSM-5 zeolites,the pyrolysis and catalytic pyrolysis of methyl butanoate,a biodiesel surrogate,with H-type ZSM-5(HZSM-5)were performed in a flow rereac tor under atmospheric pressure.The pyrolysis products were identified and quantified using gas chroma to graphy-mass spec trome try(GC-MS).Kine tic modelling and experimental results revealed that H-atom abstraction in the gas phase was the primary pathway for methyl butanoate decomposition during pyrolysis,but dissociating to ketene and methanol over HZSM-5 was the primary pathway for methyl butanoate consumption during catalytic pyrolysis.The initial decomposition temperature of methyl butanoate was reduced by approximately 300 K over HZSM-5 compared to that for the uncatalyzed reaction.In addition,the apparent activation energies of methyl butanoate under catalytic pyrolysis and homogeneous pyrolysis conditions were obtained using the Arrhenius equation.The significantly reduced apparent activation energy confirmed the catalytic performance of HZSM-5 for methyl but anoa te pyrolysis.The act iva tion t empera ture may also affec t some catalytic proper ties of HZSM-5.Overall,this study can be used to guide subsequent catalytic combustion for practical biodiesel fuels.
基金Project supported by the National Basic Research Program (973) of China (No 90505015)the National Natural Science Foundation of China (Nos 90816006 and 10732050)
文摘A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By introducing the growth stress gradient we modify the classical oxidation parabolic law. The modified factor of the oxidation rate constant is a function of growth strain, environment oxygen concentration, and temperature. The modeling results show that the stress gradient effect on the oxidation rate cannot be ignored. Growth strain will dominate whether the stress gradient effect promotes or slows down the oxidation process. The stress gradient effect becomes weaker at higher temperature. This effect is amplified at higher concentrations of environmental oxygen. Applied mechanical loads do not affect the oxidation rate. This model is available for high temperature oxidation of metals and alloys.
文摘The paper addresses the analysis of nonlinear dynamical models of some microbial growth processes. Equilibrium points, stability analysis, and structural properties are studied for different bioprocesses with various kinetics structures. First, a simple micro- organism growth process on a single limiting substrate is widely analyzed. Second, a microbial growth process combined with an enzyme-catalyzed reaction is investigated. The analysis shows that these kinds of bioprocesses have multiple equilibria, stable or unstable, operational or non-operational. The partition of nonlinear model in linear and nonlinear parts via some structural properties leads to kinetic decoupling and facilitates the equilibria and stability analysis. The performed research is useful for model reduction and for the design of observers and control algorithms. To illustrate the study results, several numerical simulations are provided.