The present study deals with the introduction of an alteration in Legendre wavelets method by availing of the Picard iteration method for system of differential equations and named it Legendre wavelet-Picard method (...The present study deals with the introduction of an alteration in Legendre wavelets method by availing of the Picard iteration method for system of differential equations and named it Legendre wavelet-Picard method (LWPM). Convergence of the proposed method is also discussed. In order to check the competence of the proposed method, basic enzyme kinetics is considered. Systems of nonlinear ordinary differential equations are formed from the considered enzyme-substrate reaction. The results obtained by the proposed LWPM are compared with the numerical results obtained from Runge-Kutta method of order four (RK-4). Numerical results and those obtained by LWPM are in excellent conformance, which would be explained by the help of table and figures. The proposed method is easy and simple to implement as compared to the other existing analytical methods used for solving systems of differential equations arising in biology, physics and engineering.展开更多
文摘The present study deals with the introduction of an alteration in Legendre wavelets method by availing of the Picard iteration method for system of differential equations and named it Legendre wavelet-Picard method (LWPM). Convergence of the proposed method is also discussed. In order to check the competence of the proposed method, basic enzyme kinetics is considered. Systems of nonlinear ordinary differential equations are formed from the considered enzyme-substrate reaction. The results obtained by the proposed LWPM are compared with the numerical results obtained from Runge-Kutta method of order four (RK-4). Numerical results and those obtained by LWPM are in excellent conformance, which would be explained by the help of table and figures. The proposed method is easy and simple to implement as compared to the other existing analytical methods used for solving systems of differential equations arising in biology, physics and engineering.