The proposed work aims to study phenol components (flavonoids) of bee bread and pollen obtained in Georgia using the HPLC (high-performance liquid chromatography) method, and to determine the content of biological...The proposed work aims to study phenol components (flavonoids) of bee bread and pollen obtained in Georgia using the HPLC (high-performance liquid chromatography) method, and to determine the content of biologically active compounds in them. The samples were taken in lmereti region (west Georgia). After extraction of samples, there were carried out spectral and HPLC analysis of compounds for the sake of qualitative and quantitative research of them. There are studied the flavonoid compounds of bee bread and pollen by using the HPLC methods, and naringin, rutin and quercetin are identified. Their amount counts about 20% of full content of flavonoids. The content of flavonols in bee bread and pollen has been established. It also has been determined that the amount of flavonoids during the storage period of products reduces to 6.17-5.03 g.kg-1.展开更多
Deactivation of Pd/C catalyst often occurs in liquid hydrogenation using industrial materials. For in-stance, the Pd/C catalyst is deactivated severely in the hydrogenation of N-(3-nitro-4-methoxyphenyl) acetamide. In...Deactivation of Pd/C catalyst often occurs in liquid hydrogenation using industrial materials. For in-stance, the Pd/C catalyst is deactivated severely in the hydrogenation of N-(3-nitro-4-methoxyphenyl) acetamide. In this study, the chemisorption of sulfur on the surface of deactivated Pd/C was detected by energy dispersive spec-trometer and X-ray photoelectron spectroscopy. Sulfur compounds poison the Pd/C catalyst and increase the forma-tion of azo deposit, reducing the activity of catalyst. We report a mild method to regenerate the Pd/C catalyst: wash the deposit by N,N-dimethylformamide and oxidize the chemisorbed sulfur by hot air. The regenerated Pd/C cata-lyst can be reused at least ten runs with stable activity.展开更多
The crystal of the title compound Sr6Gd0.61Sc1.39(BO3)6 (Mr = 1037.00) was grown by Czochralski method. It crystallizes in trigonal, space group 3Rwith a = 12.415(2), c = 9.274(2) ? Z = 3, V = 1238.0(4) 3, Dc = 4.173 ...The crystal of the title compound Sr6Gd0.61Sc1.39(BO3)6 (Mr = 1037.00) was grown by Czochralski method. It crystallizes in trigonal, space group 3Rwith a = 12.415(2), c = 9.274(2) ? Z = 3, V = 1238.0(4) 3, Dc = 4.173 g/cm3, l(MoKa) = 0.71073 ? m = 22.278 mm-1, F(000) = 1411, S = 1.213, the final R = 0.0577 and wR = 0.1414 for 401 observed reflections with I>2s(I). In the structure Gd(1)O6 (Gd(1) = Gd0.46 + Sc0.54) and Gd(2)O6 (Gd(2)= Gd0.15 + Sc0.85) are alternately stacked between the planar triangular BO3 groups to form chains extending along the trigonal axis. These chains are connected through the 9-coordinate Sr atoms.展开更多
Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution te...Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution technique and a local search strategy is developed for solving kinetic parameter estimation problems. By combining the merits of DE with Gauss-Newton method, the proposed hybrid approach employs a DE algorithm for identifying promising regions of the solution space followed by use of Gauss-Newton method to determine the optimum in the identified regions. Some well-known benchmark estimation problems are utilized to test the efficiency and the robustness of the proposed algorithm compared to other methods in literature. The comparison indicates that the present hybrid algorithm outperforms other estimation techniques in terms of the global searching ability and the con- vergence speed. Additionally, the estimation of kinetic model parameters for a feed batch fermentor is carried out to test the applicability of the proposed algorithm. The result suggests that the method can be used to estimate suitable values of model oarameters for a comolex mathematical model.展开更多
Hydrocarbon contamination may affect the soil microbial community, in terms of both diversity and function. A laboratory experiment was set-up, with a semi-arid control soil and the same soil but artificially contamin...Hydrocarbon contamination may affect the soil microbial community, in terms of both diversity and function. A laboratory experiment was set-up, with a semi-arid control soil and the same soil but artificially contaminated with diesel oil, to follow changes in the dominant species of the microbial community in the hydrocarbon-polluted soil via proteomics. Analysis of the proteins extracted from enriched cultures growing in Luria-Bertani (LB) media showed a change in the microbial community. The majority of the proteins were related to gIycolysis pathways, structural or protein synthesis. The results showed a relative increase in the complexity of the soil microbial community with hydrocarbon contamination, especially after 15 days of incubation. Species such as Ralstonia solanacearum, Synechococcus elongatus and different Clostridium sp. were adapted to contamination, not appearing in the control soil, although Bacillus sp. dominated the growing in LB in any of the treatments. We conclude that the identification of microbial species in soil extracts by culture-dependent proteomics is able to partially explain the changes in the diversity of the soil microbial community in hydrocarbon polluted semi-arid soils, but this information is much more limited than that provided by molecular methods.展开更多
The data on chemical compounds of three Rododendron species (Rh. adamsii Rehd., Rh. aureum Georgi. and Rh. lapponicum subsp, parvifolium (Adams) T. Yamaz.) from the mountain of Evota top in South Yakutia are shown...The data on chemical compounds of three Rododendron species (Rh. adamsii Rehd., Rh. aureum Georgi. and Rh. lapponicum subsp, parvifolium (Adams) T. Yamaz.) from the mountain of Evota top in South Yakutia are shown. Extracts of these plants was analyzed by method of planar chromatography in thin layers using different specific detectors to exposure of some groups of biologically active matters. During the researches, it was established that polyphenol compounds of different degree of condensment prevail in rhododendron composition; catechines, flavonoids, coumarins, saponins, essential oils, phenol carboxylic acids and arbutin are present too. Due to detected features, all the researched species of rhododendrons are perspective for practical using in food industry and as adaptogenes for maintenance of people health in the conditions of north.展开更多
Fish glue is the collagen from scale skin and bone of fish. It is known for value added product from fish processing and the adhesive agent for wood paper book binding etc. This work was aimed with the method to produ...Fish glue is the collagen from scale skin and bone of fish. It is known for value added product from fish processing and the adhesive agent for wood paper book binding etc. This work was aimed with the method to produce fish glue from fish skin through representing optimum fish type and its glue character by study on standard method for fish glue processing (using Oreochromis niloticus skin as the model), optimum fish type and characterization of the glue from optimum fish skin. Soaking fish skin in 0.1 N NaOH for 6 h and changed it every 3 h for pretreatment before acid extraction with 0.5 M acetic acid was the optimum condition for the standard processing. Among 20 types (O. niloticus, Oreochromis sp., Nemipterus sp., Psettodes erumei, Epiephelus malabaricus, Sphyraena obstsata, Channa striata, Xenentodon cancila, Barbonymus gonionotus, Liza vaigiensis, Anabas testudineus, Chanos chanos, Micronema bleekeri, Thunnus tonggol, Rastrelliger brachysom, Epinephelus lanceolatus, Lutjanus lineolatus, Pomadasys hasta, Selar crumenophthalmus and Sardaorentalis sp.), Chanos chanos was an appropriate type for glue production. Fat, protein, carbohydrate, moisture, pH and viscosity of Chanos chanos glue were 0.32%, 4.23%, 83.8%, 11.56%, 3.35, 4,978.33-8,180 cp, respectively. The glue was collagen type I which was composed ofal (148 kDa) and a2 (129 kDa) chain and could bind paper, wood and foam sheet.展开更多
The liquid effluents released from several industries including the pulp and paper industries contain phenol and phenolic compounds. The hazardous phenols and their chlorinated phenolic derivatives from pulp and paper...The liquid effluents released from several industries including the pulp and paper industries contain phenol and phenolic compounds. The hazardous phenols and their chlorinated phenolic derivatives from pulp and paper industries bear the potential to exert deleterious effects on the human health and aquatic ecosystems, if they are released untreated in the environment. Biodegradation of phenolic compounds in the effluent streams from pulp and paper industries is an important eco-friendly method for the removal of toxicity in industrial waste water, while the minimization of formation of these toxic compounds require several in-plant biotechnological techniques such as biopulping and biobleaching. Present paper reviews, the biochemical pathways involved in degradation of phenols and chlorophenols through microorganisms. Various biotechnological strategies involved in minimization and biodegradation of phenol and phenolic compounds and their related environmental engineering aspects such as utility of different bioreactor configurations have been discussed for the treatment of pulp and paper mill effluents.展开更多
The project "SolMethCO2" deals with the options of an effective methanol synthesis from atmospheric or industrial CO2 sources by implementing solar energy. First part of the projects is a wide-range survey of the ma...The project "SolMethCO2" deals with the options of an effective methanol synthesis from atmospheric or industrial CO2 sources by implementing solar energy. First part of the projects is a wide-range survey of the many different processes and sub-processes that may be involved in methanol production and of the possibilities how to make these processes available for solarization. The different fields of research were CO2 capturing, Hg/syngas-synthesis, biotechnological techniques for methanol synthesis, photocatalytical approaches and solar reactor.展开更多
One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their diverse current and futur...One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their diverse current and future technological applications. This article gives a comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods. We will cover the synthetic methodologies and the corresponding growth mechanisms, various nanostructures grown, their doping and alloying, and position-controlled growth on substrates. Finally, we will review their functional properties in catalysis, hydrophobic surface modification, sensing, and electronic, optical, optoelectronic, and energy harvesting devices.展开更多
Benzoxaborole,as a versatile scaffold,plays important roles in organic synthesis,molecular recognition and supramolecular chemistry.It is also a privileged structure in medicinal chemistry due to its desirable physico...Benzoxaborole,as a versatile scaffold,plays important roles in organic synthesis,molecular recognition and supramolecular chemistry.It is also a privileged structure in medicinal chemistry due to its desirable physicochemical and drug-like properties.Recently,benzoxaboroles were widely applied as antifungal,antibacterial,antiviral,anti-parasite,and anti-inflammatory agents.This review covers the properties,synthetic methods and applications of benzoxaboroles in medicinal chemistry.展开更多
The complicated, highly dynamic and diverse nature of biosystems brings great challenges to the specific analysis of molecular processes of interest. Nature provides antibodies for the specific recognition of antigens...The complicated, highly dynamic and diverse nature of biosystems brings great challenges to the specific analysis of molecular processes of interest. Nature provides antibodies for the specific recognition of antigens, which is a straight-forward way for targeted analysis. However, there are still limitations during the practical applications due to the big size of the antibodies, which accelerate the discovery of small molecular probes. Peptides built from various optional building blocks and easily achieved by chemical synthetic approaches with predictable conformations, are versatile and can act as tailor-made targeting vehicles.In this mini review, we summarize the recent developments in the discovery of novel peptides for bioanalytical and biomedical applications. Progresses in peptide-library design and selection strategies are presented. Recent achievements in the peptide-guided detection, imaging and disease treatment are also focused.展开更多
Naturally occurring secolignans have drawn the considerable attention because of their novel structures and diverse biological activities.In recent years,various natural secolignans with extensive bioactivities have b...Naturally occurring secolignans have drawn the considerable attention because of their novel structures and diverse biological activities.In recent years,various natural secolignans with extensive bioactivities have been reported in the literatures.In the present review,we summarized all the available information regarding the biosynthesis,distributions,separation methods,chemical structures,spectral characteristics,and biological activities of natural secolignans,and provided some valuable new insights for the further study.展开更多
基金The authors express their gratitude to Shota Rustaveli National Science Foundation (Grant 11/16) for financial provision.
文摘The proposed work aims to study phenol components (flavonoids) of bee bread and pollen obtained in Georgia using the HPLC (high-performance liquid chromatography) method, and to determine the content of biologically active compounds in them. The samples were taken in lmereti region (west Georgia). After extraction of samples, there were carried out spectral and HPLC analysis of compounds for the sake of qualitative and quantitative research of them. There are studied the flavonoid compounds of bee bread and pollen by using the HPLC methods, and naringin, rutin and quercetin are identified. Their amount counts about 20% of full content of flavonoids. The content of flavonols in bee bread and pollen has been established. It also has been determined that the amount of flavonoids during the storage period of products reduces to 6.17-5.03 g.kg-1.
基金Supported by the Natural Science Foundation of Zhejiang Provincial (LYI2B03009) and Program for Zhejiang Leading Team of Science and Technology Innovation (2011 R09020-03).
文摘Deactivation of Pd/C catalyst often occurs in liquid hydrogenation using industrial materials. For in-stance, the Pd/C catalyst is deactivated severely in the hydrogenation of N-(3-nitro-4-methoxyphenyl) acetamide. In this study, the chemisorption of sulfur on the surface of deactivated Pd/C was detected by energy dispersive spec-trometer and X-ray photoelectron spectroscopy. Sulfur compounds poison the Pd/C catalyst and increase the forma-tion of azo deposit, reducing the activity of catalyst. We report a mild method to regenerate the Pd/C catalyst: wash the deposit by N,N-dimethylformamide and oxidize the chemisorbed sulfur by hot air. The regenerated Pd/C cata-lyst can be reused at least ten runs with stable activity.
基金Supported by the National Natural Science Foundation of China (50272066) and the Key Project of Science and Technology of Fujian Province (2001H107)
文摘The crystal of the title compound Sr6Gd0.61Sc1.39(BO3)6 (Mr = 1037.00) was grown by Czochralski method. It crystallizes in trigonal, space group 3Rwith a = 12.415(2), c = 9.274(2) ? Z = 3, V = 1238.0(4) 3, Dc = 4.173 g/cm3, l(MoKa) = 0.71073 ? m = 22.278 mm-1, F(000) = 1411, S = 1.213, the final R = 0.0577 and wR = 0.1414 for 401 observed reflections with I>2s(I). In the structure Gd(1)O6 (Gd(1) = Gd0.46 + Sc0.54) and Gd(2)O6 (Gd(2)= Gd0.15 + Sc0.85) are alternately stacked between the planar triangular BO3 groups to form chains extending along the trigonal axis. These chains are connected through the 9-coordinate Sr atoms.
基金Supported by the National Natural Science Foundation of China (60804027, 61064003) and Fuzhou University Research Foundation (FZU-02335, 600338 and 600567).
文摘Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution technique and a local search strategy is developed for solving kinetic parameter estimation problems. By combining the merits of DE with Gauss-Newton method, the proposed hybrid approach employs a DE algorithm for identifying promising regions of the solution space followed by use of Gauss-Newton method to determine the optimum in the identified regions. Some well-known benchmark estimation problems are utilized to test the efficiency and the robustness of the proposed algorithm compared to other methods in literature. The comparison indicates that the present hybrid algorithm outperforms other estimation techniques in terms of the global searching ability and the con- vergence speed. Additionally, the estimation of kinetic model parameters for a feed batch fermentor is carried out to test the applicability of the proposed algorithm. The result suggests that the method can be used to estimate suitable values of model oarameters for a comolex mathematical model.
基金Supported by the JAE-Program for Ph.D. Students of Spanish Research Council
文摘Hydrocarbon contamination may affect the soil microbial community, in terms of both diversity and function. A laboratory experiment was set-up, with a semi-arid control soil and the same soil but artificially contaminated with diesel oil, to follow changes in the dominant species of the microbial community in the hydrocarbon-polluted soil via proteomics. Analysis of the proteins extracted from enriched cultures growing in Luria-Bertani (LB) media showed a change in the microbial community. The majority of the proteins were related to gIycolysis pathways, structural or protein synthesis. The results showed a relative increase in the complexity of the soil microbial community with hydrocarbon contamination, especially after 15 days of incubation. Species such as Ralstonia solanacearum, Synechococcus elongatus and different Clostridium sp. were adapted to contamination, not appearing in the control soil, although Bacillus sp. dominated the growing in LB in any of the treatments. We conclude that the identification of microbial species in soil extracts by culture-dependent proteomics is able to partially explain the changes in the diversity of the soil microbial community in hydrocarbon polluted semi-arid soils, but this information is much more limited than that provided by molecular methods.
文摘The data on chemical compounds of three Rododendron species (Rh. adamsii Rehd., Rh. aureum Georgi. and Rh. lapponicum subsp, parvifolium (Adams) T. Yamaz.) from the mountain of Evota top in South Yakutia are shown. Extracts of these plants was analyzed by method of planar chromatography in thin layers using different specific detectors to exposure of some groups of biologically active matters. During the researches, it was established that polyphenol compounds of different degree of condensment prevail in rhododendron composition; catechines, flavonoids, coumarins, saponins, essential oils, phenol carboxylic acids and arbutin are present too. Due to detected features, all the researched species of rhododendrons are perspective for practical using in food industry and as adaptogenes for maintenance of people health in the conditions of north.
文摘Fish glue is the collagen from scale skin and bone of fish. It is known for value added product from fish processing and the adhesive agent for wood paper book binding etc. This work was aimed with the method to produce fish glue from fish skin through representing optimum fish type and its glue character by study on standard method for fish glue processing (using Oreochromis niloticus skin as the model), optimum fish type and characterization of the glue from optimum fish skin. Soaking fish skin in 0.1 N NaOH for 6 h and changed it every 3 h for pretreatment before acid extraction with 0.5 M acetic acid was the optimum condition for the standard processing. Among 20 types (O. niloticus, Oreochromis sp., Nemipterus sp., Psettodes erumei, Epiephelus malabaricus, Sphyraena obstsata, Channa striata, Xenentodon cancila, Barbonymus gonionotus, Liza vaigiensis, Anabas testudineus, Chanos chanos, Micronema bleekeri, Thunnus tonggol, Rastrelliger brachysom, Epinephelus lanceolatus, Lutjanus lineolatus, Pomadasys hasta, Selar crumenophthalmus and Sardaorentalis sp.), Chanos chanos was an appropriate type for glue production. Fat, protein, carbohydrate, moisture, pH and viscosity of Chanos chanos glue were 0.32%, 4.23%, 83.8%, 11.56%, 3.35, 4,978.33-8,180 cp, respectively. The glue was collagen type I which was composed ofal (148 kDa) and a2 (129 kDa) chain and could bind paper, wood and foam sheet.
文摘The liquid effluents released from several industries including the pulp and paper industries contain phenol and phenolic compounds. The hazardous phenols and their chlorinated phenolic derivatives from pulp and paper industries bear the potential to exert deleterious effects on the human health and aquatic ecosystems, if they are released untreated in the environment. Biodegradation of phenolic compounds in the effluent streams from pulp and paper industries is an important eco-friendly method for the removal of toxicity in industrial waste water, while the minimization of formation of these toxic compounds require several in-plant biotechnological techniques such as biopulping and biobleaching. Present paper reviews, the biochemical pathways involved in degradation of phenols and chlorophenols through microorganisms. Various biotechnological strategies involved in minimization and biodegradation of phenol and phenolic compounds and their related environmental engineering aspects such as utility of different bioreactor configurations have been discussed for the treatment of pulp and paper mill effluents.
文摘The project "SolMethCO2" deals with the options of an effective methanol synthesis from atmospheric or industrial CO2 sources by implementing solar energy. First part of the projects is a wide-range survey of the many different processes and sub-processes that may be involved in methanol production and of the possibilities how to make these processes available for solarization. The different fields of research were CO2 capturing, Hg/syngas-synthesis, biotechnological techniques for methanol synthesis, photocatalytical approaches and solar reactor.
文摘One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their diverse current and future technological applications. This article gives a comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods. We will cover the synthetic methodologies and the corresponding growth mechanisms, various nanostructures grown, their doping and alloying, and position-controlled growth on substrates. Finally, we will review their functional properties in catalysis, hydrophobic surface modification, sensing, and electronic, optical, optoelectronic, and energy harvesting devices.
基金supported by National Natural Science Foundatoin of China(81222042)National Basic Research Program of China(2009CB918404,2012CB518001)
文摘Benzoxaborole,as a versatile scaffold,plays important roles in organic synthesis,molecular recognition and supramolecular chemistry.It is also a privileged structure in medicinal chemistry due to its desirable physicochemical and drug-like properties.Recently,benzoxaboroles were widely applied as antifungal,antibacterial,antiviral,anti-parasite,and anti-inflammatory agents.This review covers the properties,synthetic methods and applications of benzoxaboroles in medicinal chemistry.
基金supported by the National Natural Science Foundation of China (21375134, 21475140, 21135006, 21321003)The National Basic Research Program of China (2015CB856300)the Chinese Academy of Sciences
文摘The complicated, highly dynamic and diverse nature of biosystems brings great challenges to the specific analysis of molecular processes of interest. Nature provides antibodies for the specific recognition of antigens, which is a straight-forward way for targeted analysis. However, there are still limitations during the practical applications due to the big size of the antibodies, which accelerate the discovery of small molecular probes. Peptides built from various optional building blocks and easily achieved by chemical synthetic approaches with predictable conformations, are versatile and can act as tailor-made targeting vehicles.In this mini review, we summarize the recent developments in the discovery of novel peptides for bioanalytical and biomedical applications. Progresses in peptide-library design and selection strategies are presented. Recent achievements in the peptide-guided detection, imaging and disease treatment are also focused.
基金National Natural Science Foundation of China(Grant No.81374067)Shanghai Municipal Health Commission(Grant No.2018ZY002)
文摘Naturally occurring secolignans have drawn the considerable attention because of their novel structures and diverse biological activities.In recent years,various natural secolignans with extensive bioactivities have been reported in the literatures.In the present review,we summarized all the available information regarding the biosynthesis,distributions,separation methods,chemical structures,spectral characteristics,and biological activities of natural secolignans,and provided some valuable new insights for the further study.