[Objective] The experiment aimed to study the effects of cadmium pollution in soil on physiological and biochemical index of Allium sativum L. and provided reference for the recovery of cadmium pollution in soil. [Met...[Objective] The experiment aimed to study the effects of cadmium pollution in soil on physiological and biochemical index of Allium sativum L. and provided reference for the recovery of cadmium pollution in soil. [Method]By setting eleven Cd concentrations from 0.21 to 500 mg/kg in soil and the pot test, ecological corresponding mechanism of plant height, chlorophyll (Chl) content, catalase (CAT) activity and malondialdehyde (MDA) of Allium sativum L. was analyzed. [Result] The plant height had a strong tolerance to cadmium pollution in soil, while the total chlorophyll content and chlorophyll a content had no significant difference compared with control treatment, except Cd concentration was 500 mg/kg. The high Cd concentration would increase the damage to membrane of Allium sativum L. however with the regulation of physiological mechanism, the damage was gradually decreased.[Conclusion] Allium sativum L. had strong eco-physiological adaptability to Cd contaminated soil and it had potential for recovering Cd contaminated soil.展开更多
Statistical work and analysis were made based on data of monitored wa- ter quality data in Hedi Reservoir during 2000-2010 and the results show that the content of nutritive salt was higher and water was moderate or l...Statistical work and analysis were made based on data of monitored wa- ter quality data in Hedi Reservoir during 2000-2010 and the results show that the content of nutritive salt was higher and water was moderate or light eutrophication. Based on status quo and practical survey research of the Reservoir, the causes for eutrophication deterioration were analyzed and countermeasures were proposed, providing scientific references for sustainable development of Hedi Reservoir.展开更多
Water samples from chromite mine quarry of Sukinda and its adjacent areas were analyzed for their heavy metal contamination along with physico-chemical and microbial contents. The chromite mine water samples possessed...Water samples from chromite mine quarry of Sukinda and its adjacent areas were analyzed for their heavy metal contamination along with physico-chemical and microbial contents. The chromite mine water samples possessed high concentrations of heavy metals in the order of Cr〉Fe〉Zn〉Ni〉Co〉Mn while ground water did not show any heavy metal contamination except Fe. Physico-chemical parameters of mine water samples showed deviation from those of normal water. Mine water harboured low microbial populations of bacteria, fungi and actinomycetes in comparison with mine adjacent water samples. The correlation of data between metals with physico-chemical parameters showed both positive and negative responses while that of metal and microbial population exhibited negative correlation. Bacterial strains isolated from chromite mine water exhibited high tolerance towards chromium and other heavy metals as well as antibiotics which could be used as an indicator of heavy metal pollution.展开更多
In solving the deterioration of biological treatment system treating petrochemical wastewater under low temperatures, bioaugmentation technology was adopted by delivering engineering bacteria into a pilot-scale two-st...In solving the deterioration of biological treatment system treating petrochemical wastewater under low temperatures, bioaugmentation technology was adopted by delivering engineering bacteria into a pilot-scale two-stage anoxic-oxic (A/O) process based on previous lab-scale study. Experimental results showed that when the concentrations of COD and NH4+-N of the influent were 370~910 mg/L and 10~70 mg/L, the corresponding average concentrations of those of effluent were about 80 mg/L and 8 mg/L respectively, which was better than the Level I criteria of the Integrated Wastewater Discharge Standard (GB8978-1996). According to GC-MS analysis of the effluents from both the wastewater treatment plant (WWTP) and the pilot system, there were 68 kinds of persistent organic pollutants in the WWTP effluent, while there were only 32 in that of the pilot system. In addition, the amount of the organics in the effluent of the pilot system reduced by almost 50% compared to that of the WWTP. As a whole, after bioaugmentation, the organic removal efficiency of the wastewater treatment system obviously in- creased.展开更多
The effectiveness of vitamin C in treating Cr(VI)-contaminated water is being evaluated. Cr(VI) is an identified pollutant of some soils and groundwater. Vitamin C, an important biological reductant in humans and anim...The effectiveness of vitamin C in treating Cr(VI)-contaminated water is being evaluated. Cr(VI) is an identified pollutant of some soils and groundwater. Vitamin C, an important biological reductant in humans and animals, can be used to transform Cr(VI) to essentially nontoxic Cr(III). The removal efficiency was 89% when the mass concentration of vitamin C was 80 mg/L in 60 min, and nearly 100% Cr(VI) was removed when the mass concentration was 100 mg/L. Our data demonstrated that the removal efficiency was affected by vitamin C concentration, the reaction temperature and the dissolved oxygen concentration. The reaction mechanism of Cr(VI) by vitamin C was presented. Our study opens the way to use vitamin C to remediate Cr(VI)-contaminated soils and groundwater.展开更多
In the preliminary stage of chemical process design, the choice of chemical reaction route is the key design decision, and the concepts of atom utilization and environmental quotient have become extremely useful tools...In the preliminary stage of chemical process design, the choice of chemical reaction route is the key design decision, and the concepts of atom utilization and environmental quotient have become extremely useful tools. However, the waste quality such as chemical toxicity and other engineering factors have not been taken into account. Therefore, a synthetic route selection index, Iroute, is proposed to determine the suitability of a chemical route in this paper. Iroute considers the effects of 'extended atom economy', material renewability, chemical characteristics and some engineering factors. The extended atom economy concept regards not only the value of the desired product but also the value of byproducts. The methodology by using Iroute to compare different routes is illustrated in case study of cyclohexanone oxime and acrylonitrile manufacture.展开更多
The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological securit...The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological security dynamic monitoring,ecological security appraisal,ecological security forecast and ecological security decision-making management. The synthetic evaluation indicator system of the ecological security quality were initially established,which includes ecological environment pollution,land use and land cover change,geological hazard and epidemic outbreaks. At the same time,29 evaluating indicators were selected,divides into the basic factors,response factors and inducing factors,which need to be Real-time monitored.展开更多
Ecological restoration is widely employed from tens to millions of hectares in space,and from tens of days to thousands of years in time, which forces consideration of it thoroughly. We argue that three questions are ...Ecological restoration is widely employed from tens to millions of hectares in space,and from tens of days to thousands of years in time, which forces consideration of it thoroughly. We argue that three questions are the most important among the contents relevant of ecological restoration, including why, what and how to restore degraded systems. Why to restore determines whether or not the degraded ecological systems should be restored. What to restore is the goal of ecological restoration. The explicit goal of ecological restoration is necessary to guide ecological restoration workers in pursuit of excellence and prevent restoration from being swamped by purely technological activities. And how to restore means the methods and steps we should apply. To ensure the final success of ecological restoration, restored sites should be monitored and managed for long time to determine whether the selected methods are appropriate, and can be remedy better. Only to deal with these effectively, ecological restoration would be the hope for the future.展开更多
Thermal treatment technologies hold an important niche in the remediation of hydrocarbon- contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high t...Thermal treatment technologies hold an important niche in the remediation of hydrocarbon- contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high temperature can be energy intensive and can damage soil properties. Despite the broad applicability and prevalence of thermal remediation, little work has been done to improve the environmental compatibility and sustainahility of these technologies. We review several common thermal treatment technologies for hydrocarbon-contaminated soils, assess their potential environmental impacts, and propose frameworks for sustainable and low-impact deployment based on a holistic consideration of energy and water requirements, ecosystem ecology, and soil science. There is no universally appropriate thermal treatment technology. Rather, the appropriate choice depends on the contamination scenario (including the type of hydrocarbons present) and on site-specific considerations such as soil properties, water availability, and the heat sensitivity of contaminated soils. Overall, the convergence of treatment process engineering with soil science, ecosystem ecology, and plant biology research is essential to fill critical knowledge gaps and improve both the removal efficiency and sustainability of thermal technologies.展开更多
基金Supported by the National Natural Science Foundation of China(40601062)~~
文摘[Objective] The experiment aimed to study the effects of cadmium pollution in soil on physiological and biochemical index of Allium sativum L. and provided reference for the recovery of cadmium pollution in soil. [Method]By setting eleven Cd concentrations from 0.21 to 500 mg/kg in soil and the pot test, ecological corresponding mechanism of plant height, chlorophyll (Chl) content, catalase (CAT) activity and malondialdehyde (MDA) of Allium sativum L. was analyzed. [Result] The plant height had a strong tolerance to cadmium pollution in soil, while the total chlorophyll content and chlorophyll a content had no significant difference compared with control treatment, except Cd concentration was 500 mg/kg. The high Cd concentration would increase the damage to membrane of Allium sativum L. however with the regulation of physiological mechanism, the damage was gradually decreased.[Conclusion] Allium sativum L. had strong eco-physiological adaptability to Cd contaminated soil and it had potential for recovering Cd contaminated soil.
基金Supported by Guangdong Natural Science Foundation(8152500002000005)Guangdong Science and Technology Project(2011B030800017)Zhanjiang Normal University Talents Introduction and Undergraduates Innovation Program~~
文摘Statistical work and analysis were made based on data of monitored wa- ter quality data in Hedi Reservoir during 2000-2010 and the results show that the content of nutritive salt was higher and water was moderate or light eutrophication. Based on status quo and practical survey research of the Reservoir, the causes for eutrophication deterioration were analyzed and countermeasures were proposed, providing scientific references for sustainable development of Hedi Reservoir.
基金Financial support of the UGC-DAE, Center for Scientific Research, Kolkata Centre
文摘Water samples from chromite mine quarry of Sukinda and its adjacent areas were analyzed for their heavy metal contamination along with physico-chemical and microbial contents. The chromite mine water samples possessed high concentrations of heavy metals in the order of Cr〉Fe〉Zn〉Ni〉Co〉Mn while ground water did not show any heavy metal contamination except Fe. Physico-chemical parameters of mine water samples showed deviation from those of normal water. Mine water harboured low microbial populations of bacteria, fungi and actinomycetes in comparison with mine adjacent water samples. The correlation of data between metals with physico-chemical parameters showed both positive and negative responses while that of metal and microbial population exhibited negative correlation. Bacterial strains isolated from chromite mine water exhibited high tolerance towards chromium and other heavy metals as well as antibiotics which could be used as an indicator of heavy metal pollution.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB418505)the Science and Technology Development Program of Heilongjiang Province (No. CC05S301), China
文摘In solving the deterioration of biological treatment system treating petrochemical wastewater under low temperatures, bioaugmentation technology was adopted by delivering engineering bacteria into a pilot-scale two-stage anoxic-oxic (A/O) process based on previous lab-scale study. Experimental results showed that when the concentrations of COD and NH4+-N of the influent were 370~910 mg/L and 10~70 mg/L, the corresponding average concentrations of those of effluent were about 80 mg/L and 8 mg/L respectively, which was better than the Level I criteria of the Integrated Wastewater Discharge Standard (GB8978-1996). According to GC-MS analysis of the effluents from both the wastewater treatment plant (WWTP) and the pilot system, there were 68 kinds of persistent organic pollutants in the WWTP effluent, while there were only 32 in that of the pilot system. In addition, the amount of the organics in the effluent of the pilot system reduced by almost 50% compared to that of the WWTP. As a whole, after bioaugmentation, the organic removal efficiency of the wastewater treatment system obviously in- creased.
基金Project (No. 20407015) supported by the National Natural ScienceFoundation of China
文摘The effectiveness of vitamin C in treating Cr(VI)-contaminated water is being evaluated. Cr(VI) is an identified pollutant of some soils and groundwater. Vitamin C, an important biological reductant in humans and animals, can be used to transform Cr(VI) to essentially nontoxic Cr(III). The removal efficiency was 89% when the mass concentration of vitamin C was 80 mg/L in 60 min, and nearly 100% Cr(VI) was removed when the mass concentration was 100 mg/L. Our data demonstrated that the removal efficiency was affected by vitamin C concentration, the reaction temperature and the dissolved oxygen concentration. The reaction mechanism of Cr(VI) by vitamin C was presented. Our study opens the way to use vitamin C to remediate Cr(VI)-contaminated soils and groundwater.
文摘In the preliminary stage of chemical process design, the choice of chemical reaction route is the key design decision, and the concepts of atom utilization and environmental quotient have become extremely useful tools. However, the waste quality such as chemical toxicity and other engineering factors have not been taken into account. Therefore, a synthetic route selection index, Iroute, is proposed to determine the suitability of a chemical route in this paper. Iroute considers the effects of 'extended atom economy', material renewability, chemical characteristics and some engineering factors. The extended atom economy concept regards not only the value of the desired product but also the value of byproducts. The methodology by using Iroute to compare different routes is illustrated in case study of cyclohexanone oxime and acrylonitrile manufacture.
基金funded by National Natural Science Foundation Project (40801077)Ministry of Education Key Project (209100)+1 种基金Natural Science Foundation of Chongqing ( CSTC, 2008BB7367 )Chongqing Municipal Education Commission of Science and Technology Research Grant Project (KJ070811)~~
文摘The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological security dynamic monitoring,ecological security appraisal,ecological security forecast and ecological security decision-making management. The synthetic evaluation indicator system of the ecological security quality were initially established,which includes ecological environment pollution,land use and land cover change,geological hazard and epidemic outbreaks. At the same time,29 evaluating indicators were selected,divides into the basic factors,response factors and inducing factors,which need to be Real-time monitored.
基金UndertheauspicesoftheNationalNaturalScienceFoundationof China (No.4033100830270225)
文摘Ecological restoration is widely employed from tens to millions of hectares in space,and from tens of days to thousands of years in time, which forces consideration of it thoroughly. We argue that three questions are the most important among the contents relevant of ecological restoration, including why, what and how to restore degraded systems. Why to restore determines whether or not the degraded ecological systems should be restored. What to restore is the goal of ecological restoration. The explicit goal of ecological restoration is necessary to guide ecological restoration workers in pursuit of excellence and prevent restoration from being swamped by purely technological activities. And how to restore means the methods and steps we should apply. To ensure the final success of ecological restoration, restored sites should be monitored and managed for long time to determine whether the selected methods are appropriate, and can be remedy better. Only to deal with these effectively, ecological restoration would be the hope for the future.
基金supported by Chevron Corporationsupport of NSF EAR 0949337
文摘Thermal treatment technologies hold an important niche in the remediation of hydrocarbon- contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high temperature can be energy intensive and can damage soil properties. Despite the broad applicability and prevalence of thermal remediation, little work has been done to improve the environmental compatibility and sustainahility of these technologies. We review several common thermal treatment technologies for hydrocarbon-contaminated soils, assess their potential environmental impacts, and propose frameworks for sustainable and low-impact deployment based on a holistic consideration of energy and water requirements, ecosystem ecology, and soil science. There is no universally appropriate thermal treatment technology. Rather, the appropriate choice depends on the contamination scenario (including the type of hydrocarbons present) and on site-specific considerations such as soil properties, water availability, and the heat sensitivity of contaminated soils. Overall, the convergence of treatment process engineering with soil science, ecosystem ecology, and plant biology research is essential to fill critical knowledge gaps and improve both the removal efficiency and sustainability of thermal technologies.