Under the background of increasing energy crisis and global warming,semiconductor-based photocatalysis has received tremendous attention due to its potential application in green energy production,CO_(2) reduction and...Under the background of increasing energy crisis and global warming,semiconductor-based photocatalysis has received tremendous attention due to its potential application in green energy production,CO_(2) reduction and pollutant degradation.The photocatalytic activity of semiconductors,however,remains low due to issues like fast recombination of photo-generated electron-hole pairs,limited electron mobility,restricted optical absorption or insufficient active sites.Designing appropriate heterojunctions is proved to be a promising method to address most of these issues and thus to improve the photocatalytic performance.In this review,the working mechanism of various heterojunctions is presented systematically.The most recent advances of strategies in designing and preparing efficient heterojunction photocatalysts are further summarized and some perspectives on the future directions in this field are provided.展开更多
Global climate change promotes the energy system reform. Achieving a high proportion of renewable energy becomes the major countries' energy strategy. As proposed in its Intended Nationally Determined Contributions ...Global climate change promotes the energy system reform. Achieving a high proportion of renewable energy becomes the major countries' energy strategy. As proposed in its Intended Nationally Determined Contributions (INDC), China intends to raise the proportion of non-fossil energy in primary energy consumption to about 20% by 2030. That ambitious goal means the non-fossil energy supplies by 2030 will be 7-8 times that of 2005, and the annual increase rate is more than 8% within the 25 years. Besides, the capacity of wind power, solar power, hy- dropower and nuclear power reaches 400 GW, 350 GW, 450 GW, and 150 GW respectively, and China's non-fossil power capacity is even greater than the U.S.'s total power capacity. In addition, the scale of natural gas increases. Consequently, by 2030, the proportion of coal falls from the current 70% to below 50%, and the CO2 intensity of energy consumption decreases by 20% compared with the level of 2005, which play important roles in significantly reducing the CO2 intensity of GDE Since China has confirmed to achieve the CO2 emissions peak around 2030, at that time, the newly added energy demand will be satisfied by non-fossil energy, and the consumption of fossil fuel will stop growing. By 2030, non-fossil energy accounts for 20%, and the large scale and sound momentum of new and renewable energy industry will support the growth of total energy demand, which plays a key role in CO2 emissions peaking and beginning to decline, and lays the foundation for establishing a new energy system dominated by new and renewable energy in the second half of the 21 st century as well as finally achieving the CO2 zero-emission.展开更多
Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation m...Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation measures. Ocean energy has huge potential, but there are major interdisciplinary problems to be overcome regarding technology, cost reduction, investment, environmental impact, governance, and so forth. This article briefly reviews ocean energy production from offshore wind, tidal stream, ocean current, tidal range, wave, thermal, salinity gradients, and biomass sources. Future areas of research and development are outlined that could make exploitation of the marine renewable energy (MRE) seascape a viable proposition; these areas include energy storage, advanced materials, robotics, and informatics. The article concludes with a sustainability perspective on the MRE seascape encompassing ethics, leg- islation, the regulatory environment, governance and consenting, economic, social, and environmental constraints. A new generation of engineers is needed with the ingenuity and spirit of adventure to meet the global challenge posed by MRE.展开更多
Solar energy is an important renewable energy.Developing photovoltaic power will not only relieve the energy supply-demand contradiction and optimize the energy structure,but also help to restructure this industry.Thi...Solar energy is an important renewable energy.Developing photovoltaic power will not only relieve the energy supply-demand contradiction and optimize the energy structure,but also help to restructure this industry.This paper analyzes the status quo and the development prospects of China's photovoltaic power industry and its existing issues,and puts forward some suggestions and solutions for its healthy and orderly development.展开更多
Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct...Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.展开更多
Biomass energy would become the most potential renewable energies, for whether wind power or photovoltaic, would be restricted by the nature thus cannot provide stable power, while biomass energy is the only renewable...Biomass energy would become the most potential renewable energies, for whether wind power or photovoltaic, would be restricted by the nature thus cannot provide stable power, while biomass energy is the only renewable energy that can be used in the form of gas, liquid or solid stage, it could replace the fossil energy, lead a positive influence on the control of the greenhouse gases. Across the globe, the biomass produced through photosynthesis is about 200 Gt, or 99 Gtce per year. If 10% of the biomass is utilized, more than 4 Gt of fuel ethanol and other bioenergy products can be produced, equivalent to 4.13 Gt of petroleum consumed by the world in 2014. Therefore, bioenergy can be a feasible alternative to fossil energy.展开更多
This study was conducted to evaluate the effects of dietary lipid sources on the growth performance and fatty acid composition of the swimming crab, P ortunus trituberculatus. Four isonitrogenous and isoenergetic expe...This study was conducted to evaluate the effects of dietary lipid sources on the growth performance and fatty acid composition of the swimming crab, P ortunus trituberculatus. Four isonitrogenous and isoenergetic experimental diets were formulated to contain four separate lipid sources, including fish, soybean, rapeseed, and linseed oils(FO, SO, RO, and LO, respectively). With three replicates of 18 crabs each for each diet, crabs(initial body weight, 17.00 ±0.09 g) were fed twice daily for 8 weeks. There were no significant differences among these groups in terms of weight gain, specific growth rate, and hepatosomatic index. However, the RO groups' survival rate was significantly lower than FO groups. The feed conversion and protein efficiency ratios of RO groups were poorer than other groups. The proximate compositions of whole body and hepatopancreas were significantly affected by these dietary treatments. Tissue fatty acid composition mainly reflected dietary fatty acid compositions. Crabs fed FO diets exhibited significantly higher arachidonic, eicosapentaenoic, and docosahexaenoic acid contents in muscle and hepatopancreas compared with VO crabs. Linoleic, oleic, and linolenic acids in muscle and hepatopancreas were the highest in the SO, RO, and LO groups, respectively. The present study suggested that SO and LO could substitute for FO in fishmeal-based diets for swimming crabs, without affecting growth performance and survival.展开更多
A simple, easily-operated and economical carbonization technology with Eupatorium adenophorum was introduced in terms of instrument selection, carboniza- tion of Eupatorium adenophorum and preparation of carbon rod, a...A simple, easily-operated and economical carbonization technology with Eupatorium adenophorum was introduced in terms of instrument selection, carboniza- tion of Eupatorium adenophorum and preparation of carbon rod, and evaluation was made on economic profits from carbonization of Eupatorium adenophorum.展开更多
Nipah (Nypafruticans) is a species of palm trees that grows in mangroves environment near the sea shore. Nipah is potential to produce biofuel energy. The purposes of this research were 1) to determine the optimum ...Nipah (Nypafruticans) is a species of palm trees that grows in mangroves environment near the sea shore. Nipah is potential to produce biofuel energy. The purposes of this research were 1) to determine the optimum bacterial concentration for fermentation to produce high concentration of bio-ethanol, and 2) to determine the optimum incubation time for fermentation to produce high concentration of bio-ethanol. The research had been conducted from June until November 2009 using nipah sap as the substrate and Saceharomyces cerevisiae as a fermentation starter. The experimental design used was a randomized block design (RBD). Factors tested were starter concentration (5%, 7.5%, 10%) and incubation time (2, 4, 6 days). The variables observed were concentration of reducing sugar, total microorganism (CFU/mL), and bio-ethanol production. The results showed that the highest yield of bio-ethanol (8.98%) was produced with 7.5% of starter concentration and 6 days of incubation time.展开更多
In this paper we address the topic of energy and water optimization in the production of bioethanol from corn and switchgrass. We show that in order for these manufacturing processes to be attractive,there is a need t...In this paper we address the topic of energy and water optimization in the production of bioethanol from corn and switchgrass. We show that in order for these manufacturing processes to be attractive,there is a need to go beyond traditional heat integration and water recycling techniques. Thus,we propose a strategy based on mathe-matical programming techniques to model and optimize the structure of the processes,and perform heat integration including the use of multi-effect distillation columns and integrated water networks to show that the energy effi-ciency and water consumption in bioethanol plants can be significantly improved. Specifically,under some circum-stances energy can even be produced and the water consumption can be reduced below the values required for the production of gasoline.展开更多
The marine macroalgae Enteromorpha prolifera was one of the main algal genera that occurred in the widespread green tides in Qingdao, China, during the summers of 2007, 2008 and 2010. It is thus a plentiful source of ...The marine macroalgae Enteromorpha prolifera was one of the main algal genera that occurred in the widespread green tides in Qingdao, China, during the summers of 2007, 2008 and 2010. It is thus a plentiful source of biomass and could be used as a biofuel. In this study, the pyrolytic characteristics and kinetics of E. prolifera were investigated using thermogravimetric analysis (TGA) method. Cornstalk and sawdust were used as comparisons. Pyrolytic characteristics were studied using TG-DTG (thermogravimetry-derivative thermogravimetry) curves. Three stages in the pyrolytic process were determined: dehydration, dramatic weight loss and slow weight loss. E. prolifera was pyrolyzed at a lower initial temperature than the two terrestrial biomass forms. The apparent activation energy values for the three types of biomass were calculated and the mechanism functions were determined using 16 different mechanism functions, frequently used in thermal kinetics analysis. Activation energy values varied with mechanism function and the range of activation energy values for E. prolifera, cornstalk, and sawdust were 25-50 kJ/mol, 60-90 kJ/mol and 120-155 kJ/mol, respectively. This indicates that E. prolifera has low thermal stability for pyrolysis and good combustion characteristics.展开更多
The world is experiencing global climate change, and most scientists attribute it to the accumulation in the atmosphere of carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons. Because of its enormous emiss...The world is experiencing global climate change, and most scientists attribute it to the accumulation in the atmosphere of carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons. Because of its enormous emission rate, carbon dioxide (CO2) is the main culprit. Almost all the anthropogenic CO2 emissions come from the burning of fossil fuels for electricity, heat, and transportation. Emissions of COg can be reduced by conservation, increased use of renewable energy sources, and increased efficiencies in both the production of electrical power and the transportation sector. Capture of CO2 can be accomplished with wet scrubbing, dry sorption, or biogenic fixation. After CO2 is captured, it must be transported either as a liquid or a supercritical fluid, which realistically can only be accomplished by pipeline or ship. Final disposal of CO2 will either be to underground reservoirs or to the ocean; at present, the underground option seems to be the only viable one. Various strategies and technologies involved with reduction of CO2 emissions and carbon capture and sequestration (CCS) are briefly reviewed in this paper.展开更多
文摘Under the background of increasing energy crisis and global warming,semiconductor-based photocatalysis has received tremendous attention due to its potential application in green energy production,CO_(2) reduction and pollutant degradation.The photocatalytic activity of semiconductors,however,remains low due to issues like fast recombination of photo-generated electron-hole pairs,limited electron mobility,restricted optical absorption or insufficient active sites.Designing appropriate heterojunctions is proved to be a promising method to address most of these issues and thus to improve the photocatalytic performance.In this review,the working mechanism of various heterojunctions is presented systematically.The most recent advances of strategies in designing and preparing efficient heterojunction photocatalysts are further summarized and some perspectives on the future directions in this field are provided.
文摘Global climate change promotes the energy system reform. Achieving a high proportion of renewable energy becomes the major countries' energy strategy. As proposed in its Intended Nationally Determined Contributions (INDC), China intends to raise the proportion of non-fossil energy in primary energy consumption to about 20% by 2030. That ambitious goal means the non-fossil energy supplies by 2030 will be 7-8 times that of 2005, and the annual increase rate is more than 8% within the 25 years. Besides, the capacity of wind power, solar power, hy- dropower and nuclear power reaches 400 GW, 350 GW, 450 GW, and 150 GW respectively, and China's non-fossil power capacity is even greater than the U.S.'s total power capacity. In addition, the scale of natural gas increases. Consequently, by 2030, the proportion of coal falls from the current 70% to below 50%, and the CO2 intensity of energy consumption decreases by 20% compared with the level of 2005, which play important roles in significantly reducing the CO2 intensity of GDE Since China has confirmed to achieve the CO2 emissions peak around 2030, at that time, the newly added energy demand will be satisfied by non-fossil energy, and the consumption of fossil fuel will stop growing. By 2030, non-fossil energy accounts for 20%, and the large scale and sound momentum of new and renewable energy industry will support the growth of total energy demand, which plays a key role in CO2 emissions peaking and beginning to decline, and lays the foundation for establishing a new energy system dominated by new and renewable energy in the second half of the 21 st century as well as finally achieving the CO2 zero-emission.
文摘Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation measures. Ocean energy has huge potential, but there are major interdisciplinary problems to be overcome regarding technology, cost reduction, investment, environmental impact, governance, and so forth. This article briefly reviews ocean energy production from offshore wind, tidal stream, ocean current, tidal range, wave, thermal, salinity gradients, and biomass sources. Future areas of research and development are outlined that could make exploitation of the marine renewable energy (MRE) seascape a viable proposition; these areas include energy storage, advanced materials, robotics, and informatics. The article concludes with a sustainability perspective on the MRE seascape encompassing ethics, leg- islation, the regulatory environment, governance and consenting, economic, social, and environmental constraints. A new generation of engineers is needed with the ingenuity and spirit of adventure to meet the global challenge posed by MRE.
文摘Solar energy is an important renewable energy.Developing photovoltaic power will not only relieve the energy supply-demand contradiction and optimize the energy structure,but also help to restructure this industry.This paper analyzes the status quo and the development prospects of China's photovoltaic power industry and its existing issues,and puts forward some suggestions and solutions for its healthy and orderly development.
基金Project(HEUCF110707)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(E201216)supported by Heilongjiang Natural Science Fund,China
文摘Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.
基金supports from the National Key Technology Support Program (2012BAC18B03, 2014BAC33B01)the National 863 Program (2009AA034901)
文摘Biomass energy would become the most potential renewable energies, for whether wind power or photovoltaic, would be restricted by the nature thus cannot provide stable power, while biomass energy is the only renewable energy that can be used in the form of gas, liquid or solid stage, it could replace the fossil energy, lead a positive influence on the control of the greenhouse gases. Across the globe, the biomass produced through photosynthesis is about 200 Gt, or 99 Gtce per year. If 10% of the biomass is utilized, more than 4 Gt of fuel ethanol and other bioenergy products can be produced, equivalent to 4.13 Gt of petroleum consumed by the world in 2014. Therefore, bioenergy can be a feasible alternative to fossil energy.
基金Supported by the Agriculture Science Technology Achievement Transformation Fund(No.2014GB2C22015)the Public Projects of Zhejiang Province(Nos.2013C32037,2013C31032)+3 种基金the Zhejiang Major Special Program of Breeding(No.2012C12907-3)the Ningbo Innovation and Entrepreneurship Project(No.2014C92011)the Zhejiang Provincial Oceanic and Fishery Bureau ProjectZhoushan Science and Technology Bureau Project(No.2013C41007)
文摘This study was conducted to evaluate the effects of dietary lipid sources on the growth performance and fatty acid composition of the swimming crab, P ortunus trituberculatus. Four isonitrogenous and isoenergetic experimental diets were formulated to contain four separate lipid sources, including fish, soybean, rapeseed, and linseed oils(FO, SO, RO, and LO, respectively). With three replicates of 18 crabs each for each diet, crabs(initial body weight, 17.00 ±0.09 g) were fed twice daily for 8 weeks. There were no significant differences among these groups in terms of weight gain, specific growth rate, and hepatosomatic index. However, the RO groups' survival rate was significantly lower than FO groups. The feed conversion and protein efficiency ratios of RO groups were poorer than other groups. The proximate compositions of whole body and hepatopancreas were significantly affected by these dietary treatments. Tissue fatty acid composition mainly reflected dietary fatty acid compositions. Crabs fed FO diets exhibited significantly higher arachidonic, eicosapentaenoic, and docosahexaenoic acid contents in muscle and hepatopancreas compared with VO crabs. Linoleic, oleic, and linolenic acids in muscle and hepatopancreas were the highest in the SO, RO, and LO groups, respectively. The present study suggested that SO and LO could substitute for FO in fishmeal-based diets for swimming crabs, without affecting growth performance and survival.
基金Supported by Qiannan Forestry S&T Promotion Project~~
文摘A simple, easily-operated and economical carbonization technology with Eupatorium adenophorum was introduced in terms of instrument selection, carboniza- tion of Eupatorium adenophorum and preparation of carbon rod, and evaluation was made on economic profits from carbonization of Eupatorium adenophorum.
文摘Nipah (Nypafruticans) is a species of palm trees that grows in mangroves environment near the sea shore. Nipah is potential to produce biofuel energy. The purposes of this research were 1) to determine the optimum bacterial concentration for fermentation to produce high concentration of bio-ethanol, and 2) to determine the optimum incubation time for fermentation to produce high concentration of bio-ethanol. The research had been conducted from June until November 2009 using nipah sap as the substrate and Saceharomyces cerevisiae as a fermentation starter. The experimental design used was a randomized block design (RBD). Factors tested were starter concentration (5%, 7.5%, 10%) and incubation time (2, 4, 6 days). The variables observed were concentration of reducing sugar, total microorganism (CFU/mL), and bio-ethanol production. The results showed that the highest yield of bio-ethanol (8.98%) was produced with 7.5% of starter concentration and 6 days of incubation time.
基金the Center for Advanced Process Decision-making at Carnegie Mellon University and NSF Grant CBET096654
文摘In this paper we address the topic of energy and water optimization in the production of bioethanol from corn and switchgrass. We show that in order for these manufacturing processes to be attractive,there is a need to go beyond traditional heat integration and water recycling techniques. Thus,we propose a strategy based on mathe-matical programming techniques to model and optimize the structure of the processes,and perform heat integration including the use of multi-effect distillation columns and integrated water networks to show that the energy effi-ciency and water consumption in bioethanol plants can be significantly improved. Specifically,under some circum-stances energy can even be produced and the water consumption can be reduced below the values required for the production of gasoline.
基金Supported by the National Natural Science Foundation of China (No. 21076117)Shandong Province Higher Educational Science and Technology Program (Nos. J09LC22 and J10LC15)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-209)the Open Fund of the Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (No. Kf201016)
文摘The marine macroalgae Enteromorpha prolifera was one of the main algal genera that occurred in the widespread green tides in Qingdao, China, during the summers of 2007, 2008 and 2010. It is thus a plentiful source of biomass and could be used as a biofuel. In this study, the pyrolytic characteristics and kinetics of E. prolifera were investigated using thermogravimetric analysis (TGA) method. Cornstalk and sawdust were used as comparisons. Pyrolytic characteristics were studied using TG-DTG (thermogravimetry-derivative thermogravimetry) curves. Three stages in the pyrolytic process were determined: dehydration, dramatic weight loss and slow weight loss. E. prolifera was pyrolyzed at a lower initial temperature than the two terrestrial biomass forms. The apparent activation energy values for the three types of biomass were calculated and the mechanism functions were determined using 16 different mechanism functions, frequently used in thermal kinetics analysis. Activation energy values varied with mechanism function and the range of activation energy values for E. prolifera, cornstalk, and sawdust were 25-50 kJ/mol, 60-90 kJ/mol and 120-155 kJ/mol, respectively. This indicates that E. prolifera has low thermal stability for pyrolysis and good combustion characteristics.
文摘The world is experiencing global climate change, and most scientists attribute it to the accumulation in the atmosphere of carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons. Because of its enormous emission rate, carbon dioxide (CO2) is the main culprit. Almost all the anthropogenic CO2 emissions come from the burning of fossil fuels for electricity, heat, and transportation. Emissions of COg can be reduced by conservation, increased use of renewable energy sources, and increased efficiencies in both the production of electrical power and the transportation sector. Capture of CO2 can be accomplished with wet scrubbing, dry sorption, or biogenic fixation. After CO2 is captured, it must be transported either as a liquid or a supercritical fluid, which realistically can only be accomplished by pipeline or ship. Final disposal of CO2 will either be to underground reservoirs or to the ocean; at present, the underground option seems to be the only viable one. Various strategies and technologies involved with reduction of CO2 emissions and carbon capture and sequestration (CCS) are briefly reviewed in this paper.