The authors constructed a simplified model of spring wheat (Triticum aestivum L.) carbon assimilation and dry matter accumulation (DMA) process which consisted of two independent variables, day length (L) and total...The authors constructed a simplified model of spring wheat (Triticum aestivum L.) carbon assimilation and dry matter accumulation (DMA) process which consisted of two independent variables, day length (L) and total daily radiation (TDR). Leaf water potential (Ψ) was incorporated into the simplified growth model based on the assumption that both light use efficiency (α) and CO 2 conductance of assimilation (g c) were depressed by water limitation. Finally,Ψ was estimated from a regression equation in which the independent variables were relative soil water content in the upper 80 cm (θ R,80 ), ambient temperature (T a), vapor pressure deficit (VPD), the cumulative leaf water potential below thresholds of -1.5 MPa (Ψ c,1.5 ). Some applications in research program of field experiment of atmosphere_land surface processes in Heihe River region were tested. The simulated data agreed well with the data observed at Linze oasis in 1989 for various levels of water supply and at Zhangye oasis in 1992 in the field. The analysis and simulation using the model demonstrated that the simplified growth model could describe very well the DMA process of spring wheat with and without water limitation in the region of HEIFE (Heihe field experiment).展开更多
Stoichiometry has long been addressed in the studies of ecosystem ecology, but it was almost ignored for a long time. Until recently, ecologists have become aware that stoichiometry could provide a new tool to study e...Stoichiometry has long been addressed in the studies of ecosystem ecology, but it was almost ignored for a long time. Until recently, ecologists have become aware that stoichiometry could provide a new tool to study ecology from genes to the biosphere. Among this trend, N:P stoichiometry is used actively in ecological interactions since nitrogen (N) and phosphorus (P) are the two most important elements in most ecosystems. This article reviews the application of N:P stoichiometry to the studies of ecological problems at different levels, including ecosystem, community and species. Meanwhile, we also provide the cellular basis of N:P stoichiometry, identify the shortages in the use of N:P stoichiometry theory, and put forward some perspectives for future research to be conducted.展开更多
Tropical mountain ecosystems are usually colonized by numerous invasive plant species and represent an ideal‘natural laboratory’to study the effects of altitude on plant invasion.The aim of this study was to investi...Tropical mountain ecosystems are usually colonized by numerous invasive plant species and represent an ideal‘natural laboratory’to study the effects of altitude on plant invasion.The aim of this study was to investigate the soil chemical and microbiological properties along an altitudinal gradient on a mountain colonized by the invader Ageratina adenophora.Rhizosphere soil of A.adenophora was collected over an altitudinal gradient(1400–2400 m)in Ailao Shan,China.We determined soil organic carbon(C),nutrient contents,enzyme activities,bacterial community composition as well as C and nitrogen(N)contents of the plant roots.Ecoenzymatic stoichiometric indices were calculated to estimate the relative C,N or P limitations of the microbial community.There was a significant effect of altitude on soil organic C in the rhizosphere,and a turning point in these measured variables was detected at an altitude of 2000 m.At low elevations,the rapid growth of invasive plants depleted the deficient phosphorus(P)in tropical soils,leading to microbial P limitation;at high elevations,microbes invested more energy to obtain C from resistant litter,leading to microbial C limitation.Bacterial beta diversity and soil pH contributed most to the altitudinal differences in ecoenzymatic stoichiometry,and Proteobacteria and Acidobacteria were the dominant bacterial phyla that determined the nutrient uptake status of microorganisms.These results demonstrate how microbial nutrient acquisition belowground of A.adenophora along an altitudinal gradient,which could contribute to further knowledge about the effects of altitude on biological invasion.展开更多
文摘The authors constructed a simplified model of spring wheat (Triticum aestivum L.) carbon assimilation and dry matter accumulation (DMA) process which consisted of two independent variables, day length (L) and total daily radiation (TDR). Leaf water potential (Ψ) was incorporated into the simplified growth model based on the assumption that both light use efficiency (α) and CO 2 conductance of assimilation (g c) were depressed by water limitation. Finally,Ψ was estimated from a regression equation in which the independent variables were relative soil water content in the upper 80 cm (θ R,80 ), ambient temperature (T a), vapor pressure deficit (VPD), the cumulative leaf water potential below thresholds of -1.5 MPa (Ψ c,1.5 ). Some applications in research program of field experiment of atmosphere_land surface processes in Heihe River region were tested. The simulated data agreed well with the data observed at Linze oasis in 1989 for various levels of water supply and at Zhangye oasis in 1992 in the field. The analysis and simulation using the model demonstrated that the simplified growth model could describe very well the DMA process of spring wheat with and without water limitation in the region of HEIFE (Heihe field experiment).
文摘Stoichiometry has long been addressed in the studies of ecosystem ecology, but it was almost ignored for a long time. Until recently, ecologists have become aware that stoichiometry could provide a new tool to study ecology from genes to the biosphere. Among this trend, N:P stoichiometry is used actively in ecological interactions since nitrogen (N) and phosphorus (P) are the two most important elements in most ecosystems. This article reviews the application of N:P stoichiometry to the studies of ecological problems at different levels, including ecosystem, community and species. Meanwhile, we also provide the cellular basis of N:P stoichiometry, identify the shortages in the use of N:P stoichiometry theory, and put forward some perspectives for future research to be conducted.
基金supported by Yunnan Fundamental Research Projects(202101AU070150)the National Natural Science Foundation of China(31870524,32071663,32071661).
文摘Tropical mountain ecosystems are usually colonized by numerous invasive plant species and represent an ideal‘natural laboratory’to study the effects of altitude on plant invasion.The aim of this study was to investigate the soil chemical and microbiological properties along an altitudinal gradient on a mountain colonized by the invader Ageratina adenophora.Rhizosphere soil of A.adenophora was collected over an altitudinal gradient(1400–2400 m)in Ailao Shan,China.We determined soil organic carbon(C),nutrient contents,enzyme activities,bacterial community composition as well as C and nitrogen(N)contents of the plant roots.Ecoenzymatic stoichiometric indices were calculated to estimate the relative C,N or P limitations of the microbial community.There was a significant effect of altitude on soil organic C in the rhizosphere,and a turning point in these measured variables was detected at an altitude of 2000 m.At low elevations,the rapid growth of invasive plants depleted the deficient phosphorus(P)in tropical soils,leading to microbial P limitation;at high elevations,microbes invested more energy to obtain C from resistant litter,leading to microbial C limitation.Bacterial beta diversity and soil pH contributed most to the altitudinal differences in ecoenzymatic stoichiometry,and Proteobacteria and Acidobacteria were the dominant bacterial phyla that determined the nutrient uptake status of microorganisms.These results demonstrate how microbial nutrient acquisition belowground of A.adenophora along an altitudinal gradient,which could contribute to further knowledge about the effects of altitude on biological invasion.