To investigate the characteristics and metabolic mechanism of short-cut denitrifying phospho- rus-removing bacteria (SDPB) that are capable of enhanced biological phosphorus removal (EBPR) using nitrite as an elec...To investigate the characteristics and metabolic mechanism of short-cut denitrifying phospho- rus-removing bacteria (SDPB) that are capable of enhanced biological phosphorus removal (EBPR) using nitrite as an electron acceptor, an aerobic/anoxic sequencing batch reactor was operated under three phases. An SDPB-strain YC was screened after the sludge enrichment and was identified by morphological, physiological, biochemical properties and 16S rDNA gene sequence analysis. Denitrifying phosphorus-removing experiments were conducted to study anaerobic and anoxic metabolic mechanisms by analyzing the changes of chemical oxygen demand (COD), phosphate, nitrite, poly-fl-hydroxybutyrate (PHB), and glycogen. The results show that strain YC is a non-fermentative SDPB similar to Paracoccus denitrificans. As a kind of non-fermentative bacteria, the energy of strain YC was mainly generated from phosphorus release (96.2%) under anaerobic conditions with 0.32 mg P per mg synthesized PHB. Under anoxic conditions, strain YC accumulated 0.45 mg P per mg degraded PHB, which produced most of energy for phosphate accumulation (91.3%) and a little for glycogen synthesis (8.7%). This metabolic mechanism of strain YC is different from that of traditional phosphorus-accumulating organisms (PAOs). It is also found that PHB, a kind of intracellular polymer, plays a very important role in denitrifying and accumulating phosphorus by supplying sufficient energy for phosphorous accumulation and carbon sources for denitrification. Therefore, monitoring AP/APHB and ANO2 -N/APHB is more necessary than monitoring AP/ACOD, ANO2 -N/ACOD, or AP / ANO2 -N.展开更多
A novel modified pilot scale anaerobic oxidation ditch with additional internal anoxic zones was operated experimentally, aiming to study the improvement of biological nitrogen and phosphorus removal and the effect of...A novel modified pilot scale anaerobic oxidation ditch with additional internal anoxic zones was operated experimentally, aiming to study the improvement of biological nitrogen and phosphorus removal and the effect of enhanced denitrifying phosphorus removal in the process. Under all experimental conditions, the anaero- bic-oxidation ditch with additional internal anoxic zones and an internal recycle ratio of 200% had the highest nutrient removal efficiency. The effluent NH4 -N, total nitrogen (TN), PO3 -P and total phosphorus (TP) contents were 1.2 mg.L-1, 13 mg.L 1, 0.3 mg.L -1 and 0.4 mg.L-1, respectively, all met the discharge standards in China. The TN and TP removal efficiencies were remarkably improved from 37% and 50% to 65% and 88% with the presence of additional internal anoxic zones and internal recycle ratio of 200%. The results indicated that additional internal anoxic zones can optimize the utilization of available carbon source from the anaerobic outflow for denitrification. It was also found that phosphorus removal via the denitrification process was stimulated in the additional internal anoxic zones, which was beneficial for biological nitrogen and phosphorus removal when treating wastewater with a limited carbon source. However, an excess internal recycle would cause nitrite to accumulate in the system. This seems to be harmful to biological phosphorus removal.展开更多
A pilot-scale,pre-anoxic-anaerobic oxidation ditch was used in this study to treat municipal wastewater with limited carbon source.A novel return activated sludge(RAS) pre-concentration tank was adopted for improv-ing...A pilot-scale,pre-anoxic-anaerobic oxidation ditch was used in this study to treat municipal wastewater with limited carbon source.A novel return activated sludge(RAS) pre-concentration tank was adopted for improv-ing the phosphorus removal efficiency and the effects of RAS pre-concentration ratio were studied.Under the opti-mal operational condition,the suspended total phosphorus(STP) and the total phosphorus(TP) removal efficiencies were around 58.9% and 63.9% respectively and the effluent-P was lower than 0.8 mg·L-1.The reason is that with the optimal RAS pre-concentration ratio,nitrate is completely removed with endogenous carbon source and the secondary phosphorus release is strictly restrained in the pre-anoxic tank.Therefore,the anaerobic phosphorus release and the carbon source uptake by phosphorus accumulation organisms(PAOs) in the sludge,which are ex-tremely important to the phosphorus removal process,can be fully satisfied.Furthermore,the oxidation-reduction potential is proved to be suitable for controlling the RAS pre-concentration ratio due to influent fluctuation and varied conditions.The novel modified system is also beneficial for PAO accumulation.展开更多
This study was conducted to verify and discuss the denitrifying dephosphatation under different levels of nitrate concentration and retention time of anoxic/aerobic process in a Sequencing Batch Reactor (SBR). The res...This study was conducted to verify and discuss the denitrifying dephosphatation under different levels of nitrate concentration and retention time of anoxic/aerobic process in a Sequencing Batch Reactor (SBR). The results of tests demonstrated that there were two kinds of phosphorus-accumulating organisms (PAOs) in the biological excess phosphorus removal (BEPR) system. One was non-DNPAOs that could only use oxygen as terminal electron acceptors, the other was denitrifying PAOs (DNPAOs) that could use both nitrate and oxygen as terminal electron acceptors. Phosphorus uptake efficiency could be attained under anoxic period ranging from 28.7%-96.7% in an anaerobic/anoxic/aerobic system. Experimental results showed that nitrate concentration and retention time of anoxic/aerobic process were the key factors affecting the course of denitrifying dephosphatation.展开更多
The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in a...The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic- anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-13-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating or- ganisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fer- mentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49-5.99 g N/(kg MLVSS.h) (MLVSS is mixed liquor volatile suspended solids) and 6.63-6.81 g N/(kg MLVSS.h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes.展开更多
The effects of two different external carbon sources (acetate and ethanol) and electron acceptors (dissolved oxygen, nitrate, and nitrite) were investigated under aerobic and anoxic conditions with non-acclimated ...The effects of two different external carbon sources (acetate and ethanol) and electron acceptors (dissolved oxygen, nitrate, and nitrite) were investigated under aerobic and anoxic conditions with non-acclimated process bi- omass from a full-scale biological nutrient removal-activated sludge system. When acetate was added as an external carbon source, phosphate release was observed even in the presence of electron acceptors. The release rates were 1.7, 7.8, and 3.5 mg P/(g MLVSS.h) (MLVSS: mixed liquor volatile suspended solids), respectively, for dissolved oxygen, nitrate, and nitrite. In the case of ethanol, no phosphate release was observed in the presence of electron acceptors. Results of the experiments with nitrite showed that approximately 25 mg NO2-N/L of nitrite inhibited anoxic phosphorus uptake regardless of the concentration of the tested external carbon sources. Furthermore, higher deni- trification rates were obtained with acetate (1.4 and 0.8 mg N/(g MLVSS.h)) compared to ethanol (1.1 and 0.7 mg N/ (g MLVSS.h)) for both anoxic electron acceptors (nitrate and nitrite).展开更多
基金Supported by the Nafional Natural Science Foundation of China (51078008), the Natural Science Foundation of Guangdong Province (06022869, 07003251), and the National Key Scientific and Technological Project Water Pollution Control and Treatment (2008ZX07211-003, 2009ZX07314-009-003).
文摘To investigate the characteristics and metabolic mechanism of short-cut denitrifying phospho- rus-removing bacteria (SDPB) that are capable of enhanced biological phosphorus removal (EBPR) using nitrite as an electron acceptor, an aerobic/anoxic sequencing batch reactor was operated under three phases. An SDPB-strain YC was screened after the sludge enrichment and was identified by morphological, physiological, biochemical properties and 16S rDNA gene sequence analysis. Denitrifying phosphorus-removing experiments were conducted to study anaerobic and anoxic metabolic mechanisms by analyzing the changes of chemical oxygen demand (COD), phosphate, nitrite, poly-fl-hydroxybutyrate (PHB), and glycogen. The results show that strain YC is a non-fermentative SDPB similar to Paracoccus denitrificans. As a kind of non-fermentative bacteria, the energy of strain YC was mainly generated from phosphorus release (96.2%) under anaerobic conditions with 0.32 mg P per mg synthesized PHB. Under anoxic conditions, strain YC accumulated 0.45 mg P per mg degraded PHB, which produced most of energy for phosphate accumulation (91.3%) and a little for glycogen synthesis (8.7%). This metabolic mechanism of strain YC is different from that of traditional phosphorus-accumulating organisms (PAOs). It is also found that PHB, a kind of intracellular polymer, plays a very important role in denitrifying and accumulating phosphorus by supplying sufficient energy for phosphorous accumulation and carbon sources for denitrification. Therefore, monitoring AP/APHB and ANO2 -N/APHB is more necessary than monitoring AP/ACOD, ANO2 -N/ACOD, or AP / ANO2 -N.
基金Supported by Major Science and Technology Program for Water Pollution Control and Treatment(2008ZX07316)
文摘A novel modified pilot scale anaerobic oxidation ditch with additional internal anoxic zones was operated experimentally, aiming to study the improvement of biological nitrogen and phosphorus removal and the effect of enhanced denitrifying phosphorus removal in the process. Under all experimental conditions, the anaero- bic-oxidation ditch with additional internal anoxic zones and an internal recycle ratio of 200% had the highest nutrient removal efficiency. The effluent NH4 -N, total nitrogen (TN), PO3 -P and total phosphorus (TP) contents were 1.2 mg.L-1, 13 mg.L 1, 0.3 mg.L -1 and 0.4 mg.L-1, respectively, all met the discharge standards in China. The TN and TP removal efficiencies were remarkably improved from 37% and 50% to 65% and 88% with the presence of additional internal anoxic zones and internal recycle ratio of 200%. The results indicated that additional internal anoxic zones can optimize the utilization of available carbon source from the anaerobic outflow for denitrification. It was also found that phosphorus removal via the denitrification process was stimulated in the additional internal anoxic zones, which was beneficial for biological nitrogen and phosphorus removal when treating wastewater with a limited carbon source. However, an excess internal recycle would cause nitrite to accumulate in the system. This seems to be harmful to biological phosphorus removal.
基金Supported by the Major Science and Technology Program for Water Pollution Control and Treatment (2008ZX07316)
文摘A pilot-scale,pre-anoxic-anaerobic oxidation ditch was used in this study to treat municipal wastewater with limited carbon source.A novel return activated sludge(RAS) pre-concentration tank was adopted for improv-ing the phosphorus removal efficiency and the effects of RAS pre-concentration ratio were studied.Under the opti-mal operational condition,the suspended total phosphorus(STP) and the total phosphorus(TP) removal efficiencies were around 58.9% and 63.9% respectively and the effluent-P was lower than 0.8 mg·L-1.The reason is that with the optimal RAS pre-concentration ratio,nitrate is completely removed with endogenous carbon source and the secondary phosphorus release is strictly restrained in the pre-anoxic tank.Therefore,the anaerobic phosphorus release and the carbon source uptake by phosphorus accumulation organisms(PAOs) in the sludge,which are ex-tremely important to the phosphorus removal process,can be fully satisfied.Furthermore,the oxidation-reduction potential is proved to be suitable for controlling the RAS pre-concentration ratio due to influent fluctuation and varied conditions.The novel modified system is also beneficial for PAO accumulation.
基金Sponsored by the National Natural Science Foundation of China(Grant No50008014)
文摘This study was conducted to verify and discuss the denitrifying dephosphatation under different levels of nitrate concentration and retention time of anoxic/aerobic process in a Sequencing Batch Reactor (SBR). The results of tests demonstrated that there were two kinds of phosphorus-accumulating organisms (PAOs) in the biological excess phosphorus removal (BEPR) system. One was non-DNPAOs that could only use oxygen as terminal electron acceptors, the other was denitrifying PAOs (DNPAOs) that could use both nitrate and oxygen as terminal electron acceptors. Phosphorus uptake efficiency could be attained under anoxic period ranging from 28.7%-96.7% in an anaerobic/anoxic/aerobic system. Experimental results showed that nitrate concentration and retention time of anoxic/aerobic process were the key factors affecting the course of denitrifying dephosphatation.
基金supported by the National Water Pollution Control and Management of Major Special Science and Technology Foundation(No.2011ZX07303-001),China
文摘The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic- anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-13-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating or- ganisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fer- mentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49-5.99 g N/(kg MLVSS.h) (MLVSS is mixed liquor volatile suspended solids) and 6.63-6.81 g N/(kg MLVSS.h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes.
基金Project supported by the European Regional Development Fund within the Framework of the Innovative Economy Operational Program 2007-2013(No.UDA-POIG.01.03.01-22-140/09-04)the CARbon BALAncing for Nutrient Control in Wastewater Treatment(CARBALA)(No.PIRSES-GA-2011-295176)the National Water Pollution Control and Management of Science and Technology in China(No.2015ZX07218001)
文摘The effects of two different external carbon sources (acetate and ethanol) and electron acceptors (dissolved oxygen, nitrate, and nitrite) were investigated under aerobic and anoxic conditions with non-acclimated process bi- omass from a full-scale biological nutrient removal-activated sludge system. When acetate was added as an external carbon source, phosphate release was observed even in the presence of electron acceptors. The release rates were 1.7, 7.8, and 3.5 mg P/(g MLVSS.h) (MLVSS: mixed liquor volatile suspended solids), respectively, for dissolved oxygen, nitrate, and nitrite. In the case of ethanol, no phosphate release was observed in the presence of electron acceptors. Results of the experiments with nitrite showed that approximately 25 mg NO2-N/L of nitrite inhibited anoxic phosphorus uptake regardless of the concentration of the tested external carbon sources. Furthermore, higher deni- trification rates were obtained with acetate (1.4 and 0.8 mg N/(g MLVSS.h)) compared to ethanol (1.1 and 0.7 mg N/ (g MLVSS.h)) for both anoxic electron acceptors (nitrate and nitrite).