In order to find out a new way for environment-friendly and resourcelized utilization of cassava starch processing wastewater, the cassava starch anaerobic fermentation liquid was applied in watermelon production, and...In order to find out a new way for environment-friendly and resourcelized utilization of cassava starch processing wastewater, the cassava starch anaerobic fermentation liquid was applied in watermelon production, and its effects on the growth and development, yield and fruit quality of watermelon were investigated. The results showed that the cassava starch anaerobic fermentation liquid significant- ly promoted the vegetative and reproductive growth and improved the yield and fruit quality of watermelon. Compared with conventional fertilization, the application of cassava starch anaerobic fermentation both with COD concentration of 1 200 mg/L according to the amount of 150 t/hm2 promoted the growth of vines and leaves of watermelon plants, brought forward the flowering, fruiting and harvest of watermelon and significantly increased the fruit number, fruit weight, yield, fruit size, fruit shape index, soluble solid content, soluble sugar content, soluble protein content and Vita- min C content of watermelon. At the same time of improving the yield and quality of watermelon, cassava starch anaerobic fermentation liquid was turned into treasure as a liquid fertilizer. This study provides a new ideal for the yield and quality im- provement of watermelon and the wastewater treating of starch factories.展开更多
AIM: To investigate the effect of fermented soy milk on human ecosystem in the intestinal tract by way of examining the population of different microorganisms isolated from fecal samples.METHODS: A crossover experimen...AIM: To investigate the effect of fermented soy milk on human ecosystem in the intestinal tract by way of examining the population of different microorganisms isolated from fecal samples.METHODS: A crossover experimental design was applied.Twenty-eight healthy adults completed this experiment.Each subject consumed 250 mL, twice a day between meals, of either fermented soy milk or regular soy milk first for 2 wk, then switched to the other drink after 2 wk.Fecal samples were collected from all subjects every week starting from the second week to the end of the experiment.The microorganisms analyzed were Bifidobacterium spp.,Lactobacillus spp., Clostridium perfringens, coliform organisms, and total anaerobic organisms.RESULTS: In the period of fermented soy milk consumption,the populations of Bifidobacterium spp. and Lactobacillus spp. increased (P<0.05) as well as the ratios of Bifidobacterium spp. and lactobacillus spp. to Clostridium perfringens (P<0.05). The population of coliform organisms decreased (P<0.05) when subjects were in the period of fermented soy milk consumption.CONCLUSION: Intake of fermented soy milk significantly improved the ecosystem of the intestinal tract in the body by increasing the amount of probiotics.展开更多
Municipal wastewater treatment has long been known as a high-cost and energy-intensive process that destroys most of the energy-containing molecules by spending energy and that leaves little energy and few nutrients a...Municipal wastewater treatment has long been known as a high-cost and energy-intensive process that destroys most of the energy-containing molecules by spending energy and that leaves little energy and few nutrients available for reuse, Over the past few years, some wastewater treatment plants have tried to revamp themselves as "resource factories," enabled by new technologies and the upgrading of old technologies. In particular, there is an renewed interest in anaerobic biotechnologies, which can convert organic matter into usable energy and preserve nutrients for potential reuse. However, considerable technological and economic limitations still exist. Here, we provide an overview of recent advances in several cutting-edge anaerobic biotechnologies for wastewater treatment, including enhanced side- stream anaerobic sludge digestion, anaerobic membrane bioreactors, and microbial electrochemical systems, and discuss future challenges and opportunities for their applications. This review is intended to provide useful information to guide the future design and optimization of municipal wastewater treatment processes.展开更多
The isolation of microorganisms for biodegradation of minimal fats and oils at low temperatures was reported. By using rapeseed oil as a sole carbon source, six strains were isolated from five kinds of oils/fats-conta...The isolation of microorganisms for biodegradation of minimal fats and oils at low temperatures was reported. By using rapeseed oil as a sole carbon source, six strains were isolated from five kinds of oils/fats-contaminated wastewater, soil, and active sludge. Among them, two strains which show the highest oil removal ratios were identified as Pseudomonas pseudoalcaligenes and Pseudomonas mendocina, respectively. The experiments of orthogonal impact conditions show that the optimal oil degradation condition is at pH 8.0, 5 ℃ and 100 mg/L oil. Under this condition, the rapeseed oil degradation ratios of two strains after 24 hours amount to 92.6% and 92.0% respectively, whereas the removal ratios of lard decrease to 39.5% and 54.3%.展开更多
Phosphorus removal performance in an aerobic/aerobic sequencing batch reactor (SBR) supplied with glucose as carbon source was investigated. It was found that there was no phosphate release concomitant with the storin...Phosphorus removal performance in an aerobic/aerobic sequencing batch reactor (SBR) supplied with glucose as carbon source was investigated. It was found that there was no phosphate release concomitant with the storing of poly-β-hydroxyalkanoate (PHA) during the anaerobic phase. Whereas, glycogen was soon built up followed by rapid consumption, at the same time, glucose was depleted rapidly. Based on the analysis of different fractions of phosphorus in activated sludge, the relative ratio of organically bound phosphorus in sludge changed at the end of anaerobic and aerobic phases. The ratios were 45.3% and 51.8% respectively. This showed that the polyphosphate broke down during the anaerobic phase to supply part of energy for PHA synthesis. The reason why there was no phosphate release might be the biosorption effect of extracellular exopolymers (EPS). It was also proved by the analysis of EPS with scanning electron microscopy (SEM) combined with energy dispersive spectrometry (EDS). The phosphorus weight percentage of EPS at the end of anaerobic phase was 9.22%.展开更多
文摘In order to find out a new way for environment-friendly and resourcelized utilization of cassava starch processing wastewater, the cassava starch anaerobic fermentation liquid was applied in watermelon production, and its effects on the growth and development, yield and fruit quality of watermelon were investigated. The results showed that the cassava starch anaerobic fermentation liquid significant- ly promoted the vegetative and reproductive growth and improved the yield and fruit quality of watermelon. Compared with conventional fertilization, the application of cassava starch anaerobic fermentation both with COD concentration of 1 200 mg/L according to the amount of 150 t/hm2 promoted the growth of vines and leaves of watermelon plants, brought forward the flowering, fruiting and harvest of watermelon and significantly increased the fruit number, fruit weight, yield, fruit size, fruit shape index, soluble solid content, soluble sugar content, soluble protein content and Vita- min C content of watermelon. At the same time of improving the yield and quality of watermelon, cassava starch anaerobic fermentation liquid was turned into treasure as a liquid fertilizer. This study provides a new ideal for the yield and quality im- provement of watermelon and the wastewater treating of starch factories.
基金Supported by the Taiwan Tobacco and Liquor Company, No. 0930001444
文摘AIM: To investigate the effect of fermented soy milk on human ecosystem in the intestinal tract by way of examining the population of different microorganisms isolated from fecal samples.METHODS: A crossover experimental design was applied.Twenty-eight healthy adults completed this experiment.Each subject consumed 250 mL, twice a day between meals, of either fermented soy milk or regular soy milk first for 2 wk, then switched to the other drink after 2 wk.Fecal samples were collected from all subjects every week starting from the second week to the end of the experiment.The microorganisms analyzed were Bifidobacterium spp.,Lactobacillus spp., Clostridium perfringens, coliform organisms, and total anaerobic organisms.RESULTS: In the period of fermented soy milk consumption,the populations of Bifidobacterium spp. and Lactobacillus spp. increased (P<0.05) as well as the ratios of Bifidobacterium spp. and lactobacillus spp. to Clostridium perfringens (P<0.05). The population of coliform organisms decreased (P<0.05) when subjects were in the period of fermented soy milk consumption.CONCLUSION: Intake of fermented soy milk significantly improved the ecosystem of the intestinal tract in the body by increasing the amount of probiotics.
基金Acknowledgements The authors wish to thank the National Natural Science Foundation of China (51522811 and 51278479), and the NSFC-RGC fund (21261160489) for the support of this work.
文摘Municipal wastewater treatment has long been known as a high-cost and energy-intensive process that destroys most of the energy-containing molecules by spending energy and that leaves little energy and few nutrients available for reuse, Over the past few years, some wastewater treatment plants have tried to revamp themselves as "resource factories," enabled by new technologies and the upgrading of old technologies. In particular, there is an renewed interest in anaerobic biotechnologies, which can convert organic matter into usable energy and preserve nutrients for potential reuse. However, considerable technological and economic limitations still exist. Here, we provide an overview of recent advances in several cutting-edge anaerobic biotechnologies for wastewater treatment, including enhanced side- stream anaerobic sludge digestion, anaerobic membrane bioreactors, and microbial electrochemical systems, and discuss future challenges and opportunities for their applications. This review is intended to provide useful information to guide the future design and optimization of municipal wastewater treatment processes.
文摘The isolation of microorganisms for biodegradation of minimal fats and oils at low temperatures was reported. By using rapeseed oil as a sole carbon source, six strains were isolated from five kinds of oils/fats-contaminated wastewater, soil, and active sludge. Among them, two strains which show the highest oil removal ratios were identified as Pseudomonas pseudoalcaligenes and Pseudomonas mendocina, respectively. The experiments of orthogonal impact conditions show that the optimal oil degradation condition is at pH 8.0, 5 ℃ and 100 mg/L oil. Under this condition, the rapeseed oil degradation ratios of two strains after 24 hours amount to 92.6% and 92.0% respectively, whereas the removal ratios of lard decrease to 39.5% and 54.3%.
文摘Phosphorus removal performance in an aerobic/aerobic sequencing batch reactor (SBR) supplied with glucose as carbon source was investigated. It was found that there was no phosphate release concomitant with the storing of poly-β-hydroxyalkanoate (PHA) during the anaerobic phase. Whereas, glycogen was soon built up followed by rapid consumption, at the same time, glucose was depleted rapidly. Based on the analysis of different fractions of phosphorus in activated sludge, the relative ratio of organically bound phosphorus in sludge changed at the end of anaerobic and aerobic phases. The ratios were 45.3% and 51.8% respectively. This showed that the polyphosphate broke down during the anaerobic phase to supply part of energy for PHA synthesis. The reason why there was no phosphate release might be the biosorption effect of extracellular exopolymers (EPS). It was also proved by the analysis of EPS with scanning electron microscopy (SEM) combined with energy dispersive spectrometry (EDS). The phosphorus weight percentage of EPS at the end of anaerobic phase was 9.22%.