期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
不均衡小样本下多特征优化选择的生命体触电故障识别方法
1
作者 高伟 饶俊民 +1 位作者 全圣鑫 郭谋发 《电工技术学报》 EI CSCD 北大核心 2024年第7期2060-2071,共12页
针对现有的剩余电流保护装置无法有效识别触电事故的问题,该文提出了一种不均衡小样本下多特征优化选择的生命体触电故障识别方法。首先通过变分自编码器(VAE)对实验收集到的生命体触电小样本数据进行增殖以实现正负样本均衡;然后在时... 针对现有的剩余电流保护装置无法有效识别触电事故的问题,该文提出了一种不均衡小样本下多特征优化选择的生命体触电故障识别方法。首先通过变分自编码器(VAE)对实验收集到的生命体触电小样本数据进行增殖以实现正负样本均衡;然后在时域上提取能够反映波形动态变化特性的23个特征量,并利用高斯核Fisher判别分析(GKFDA)与最大信息系数(MIC)法从中选择最优表达特征组;最后,提出基于遗忘因子的在线顺序极限学习机(FOS-ELM)算法实现生命体触电行为的鉴别。实验结果表明,所提方法利用不均衡小样本触电数据集就可以训练出一个优秀的分类模型,诊断准确率可达98.75%,诊断时间仅为1.33 ms。其优良的性能结合在线增量式学习分类器设计,使得模型具备新知识学习能力,具有极好的工程应用前景。 展开更多
关键词 剩余电流保护装置 生命体触电故障 多特征优化选择 基于遗忘因子的在线顺序 极限学习机(FOS-ELM) 不均衡小样本
下载PDF
基于BP神经网络的低压配电网生命体触电识别方法研究 被引量:13
2
作者 蔡智萍 郭谋发 魏正峰 《电网技术》 EI CSCD 北大核心 2022年第4期1614-1623,共10页
现有剩余电流保护器多以总剩余电流有效值作为动作判据,阈值固定,且无法识别触电类型,因而提出基于自适应阈值和BP神经网络的低压配电网生命体触电识别方法。总剩余电流信号经Mallat算法消噪处理,由得到的低频分量构造出自适应阈值,用... 现有剩余电流保护器多以总剩余电流有效值作为动作判据,阈值固定,且无法识别触电类型,因而提出基于自适应阈值和BP神经网络的低压配电网生命体触电识别方法。总剩余电流信号经Mallat算法消噪处理,由得到的低频分量构造出自适应阈值,用于确定触电发生时刻,提取能表征生命体特性的统计量特征,对BP神经网络进行训练,建立触电类型识别模型。物理仿真实验表明,该方法能够满足剩余电流保护器所要求的速动性和可靠性,触电类型识别准确率达99.93%,对于开发新一代剩余电流保护器具有参考价值。 展开更多
关键词 低压配电网 生命体触电 MALLAT算法 BP神经网络 触电类型识别
下载PDF
基于长短期记忆神经网络的生命体触电电流检测 被引量:4
3
作者 赵启承 虞雁凌 《传感器与微系统》 CSCD 北大核心 2022年第1期142-145,共4页
针对当前低压配电网剩余电流保护设备只能依靠剩余电流幅值作为保护机构动作依据,无法识别触电特征的问题,提出了基于小波分解降噪和长短期记忆(LSTM)神经网络的低压配电网生命体触电电流检测方法。首先将总剩余电流信号通过小波分解算... 针对当前低压配电网剩余电流保护设备只能依靠剩余电流幅值作为保护机构动作依据,无法识别触电特征的问题,提出了基于小波分解降噪和长短期记忆(LSTM)神经网络的低压配电网生命体触电电流检测方法。首先将总剩余电流信号通过小波分解算法进行降噪,然后将降噪后的生命体触电电流波形作为输入,对LSTM神经网络进行训练,建立生命体触电电流检测模型。仿真实验表明:该方法在速度和准确率上与卷积神经网络(CNN)和反向传播(BP)神经网络相比有明显优势,能够满足剩余电流保护装置速动性的要求,并且稳定性好,生命体触电识别准确率高,对新一代的继电保护设备的研究与开发具有一定的参考价值。 展开更多
关键词 低压配电网 生命体触电电流 小波分解 长短期记忆神经网络 触电识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部