Goethite is a metals-rich residue that occurs during zinc production. The feasibility of metal recovery from goethite has been demonstrated, but is not economically viable on an industrial scale. Therefore, goethite i...Goethite is a metals-rich residue that occurs during zinc production. The feasibility of metal recovery from goethite has been demonstrated, but is not economically viable on an industrial scale. Therefore, goethite is landfilled with considerable economic costs and environmental risks. The goal of this study is to evaluate the environmental performance of a new valorization strategy for goethite residues from zinc production, with the aims of: ① recovering the valuable zinc contained in the goethite and ② avoiding the landfilling of goethite by producing a clean byproduct. The presented goethite valoriza- tion strategy consists of a sequence of two processes: ① plasma fuming and ② inorganic polymerization of the fumed slag. Plasma fuming recovers the valuable metals by fuming the goethite. The metals-flee fumed slag undergoes a process of inorganic polymerization to form inorganic polymers, that can be used as a novel building material, as an alternative to ordinary Portland cement (OPC)-based concrete. Life- cycle assessment (LCA) is used to compare the environmental performance of the inorganic polymer with the environmental performances of equivalent OPC-based concrete. The LCA results show the tradeoff between the environmental burdens of the fuming process and inorganic polymerization versus the environmental benefits of metal recovery, OPC concrete substitution, and the avoidance of goethite land- filling. The goethite-based inorganic polymers production shows better performances in several environ- mental impact categories, thanks to the avoided landfilling of goethite. However, in other environmental impact categories, such as global warming, the goethite valorization is strongly affected by the high-energy requirements of the plasma-fuming process, which represent the environmental hotspots of the proposed goethite recycling scheme. The key elements toward the sustainability of goethite valorization have been identified, and include the use of a clean electric mix, more effective control of the fumed gas emissions, and a reduced use of fumed slag through increased efficiency of the inorganic polymerization process.展开更多
The authors have proposed a new of magnetic isotope theory of life on Earth. According to this theory the initial impetus for the beginning of the synthesis of organic compounds is the impact of electromagnetic radiat...The authors have proposed a new of magnetic isotope theory of life on Earth. According to this theory the initial impetus for the beginning of the synthesis of organic compounds is the impact of electromagnetic radiation from the sun and energy radioactive isotopes.展开更多
Special research attention has been paid to phosphorus-containing materials and their corresponding applications. This mini review considers recent publications devoted to the "living"/controlled radical(co)...Special research attention has been paid to phosphorus-containing materials and their corresponding applications. This mini review considers recent publications devoted to the "living"/controlled radical(co)polymerization of phosphorus-containing monomers. In addition, different properties of the polymers involved in the phosphonate group in various chemical environments are demonstrated, and their potential applications are briefly discussed.展开更多
The olivine-typed cathode material of Li Fe PO4 was prepared via sol-gel method,and the bromine was doped into Li Fe PO4.The crystal structure,morphology,and electrochemical properties of the samples were investigated...The olivine-typed cathode material of Li Fe PO4 was prepared via sol-gel method,and the bromine was doped into Li Fe PO4.The crystal structure,morphology,and electrochemical properties of the samples were investigated by X-ray diffraction,scanning electron microscopy and charge–discharge cycle measurements.The results showed that the electrochemical performance of Li Fe PO4 had been improved by bromine doping,and the best doping amount of bromine is 2%.The discharge capacity of this sample can reach 152 m Ah/g at 0.2 C.展开更多
文摘Goethite is a metals-rich residue that occurs during zinc production. The feasibility of metal recovery from goethite has been demonstrated, but is not economically viable on an industrial scale. Therefore, goethite is landfilled with considerable economic costs and environmental risks. The goal of this study is to evaluate the environmental performance of a new valorization strategy for goethite residues from zinc production, with the aims of: ① recovering the valuable zinc contained in the goethite and ② avoiding the landfilling of goethite by producing a clean byproduct. The presented goethite valoriza- tion strategy consists of a sequence of two processes: ① plasma fuming and ② inorganic polymerization of the fumed slag. Plasma fuming recovers the valuable metals by fuming the goethite. The metals-flee fumed slag undergoes a process of inorganic polymerization to form inorganic polymers, that can be used as a novel building material, as an alternative to ordinary Portland cement (OPC)-based concrete. Life- cycle assessment (LCA) is used to compare the environmental performance of the inorganic polymer with the environmental performances of equivalent OPC-based concrete. The LCA results show the tradeoff between the environmental burdens of the fuming process and inorganic polymerization versus the environmental benefits of metal recovery, OPC concrete substitution, and the avoidance of goethite land- filling. The goethite-based inorganic polymers production shows better performances in several environ- mental impact categories, thanks to the avoided landfilling of goethite. However, in other environmental impact categories, such as global warming, the goethite valorization is strongly affected by the high-energy requirements of the plasma-fuming process, which represent the environmental hotspots of the proposed goethite recycling scheme. The key elements toward the sustainability of goethite valorization have been identified, and include the use of a clean electric mix, more effective control of the fumed gas emissions, and a reduced use of fumed slag through increased efficiency of the inorganic polymerization process.
文摘The authors have proposed a new of magnetic isotope theory of life on Earth. According to this theory the initial impetus for the beginning of the synthesis of organic compounds is the impact of electromagnetic radiation from the sun and energy radioactive isotopes.
基金supported by the National Natural Science Foundation of China(21174096,21274100,21234005)the Specialized Research Fund for the Doctoral Program of Higher Education(20123201130001)+2 种基金the Project of Science and Technology Development Planning of Suzhou(ZXG201413,SYG201430)the Project of Science and Technology Development Planning of Jiangsu Province(BK20141192)the Project Fund of the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Special research attention has been paid to phosphorus-containing materials and their corresponding applications. This mini review considers recent publications devoted to the "living"/controlled radical(co)polymerization of phosphorus-containing monomers. In addition, different properties of the polymers involved in the phosphonate group in various chemical environments are demonstrated, and their potential applications are briefly discussed.
文摘The olivine-typed cathode material of Li Fe PO4 was prepared via sol-gel method,and the bromine was doped into Li Fe PO4.The crystal structure,morphology,and electrochemical properties of the samples were investigated by X-ray diffraction,scanning electron microscopy and charge–discharge cycle measurements.The results showed that the electrochemical performance of Li Fe PO4 had been improved by bromine doping,and the best doping amount of bromine is 2%.The discharge capacity of this sample can reach 152 m Ah/g at 0.2 C.