Several hundred species of bacteria inhabit the gut, and affect its cell biology, morphology and homeostasis. Many bacteria are however potential pathogens, especially if the integrity of the epithelial barrier is phy...Several hundred species of bacteria inhabit the gut, and affect its cell biology, morphology and homeostasis. Many bacteria are however potential pathogens, especially if the integrity of the epithelial barrier is physically or functionally breached. Conversely, the interaction between host and commensal microbes can confer important health benefits. This has led to commercial and public interest in 'probiotics', live microbes principally taken as food supplements. Might probiotics also be used in disease therapy? Experimental evidence that probiotics modulate gut physiology, particularly barrier integrity and immunological function, underpins exciting new gastroenterological research. We discuss below the scientific basis for probiotic effects and present a critical perspective for their use in relation to gastrointestinal disease.展开更多
Hepatitis C is recognized as a major threat to global public health. The current treatment of patients with chronic hepatitis C is the addition of ribavirin to interferon-based therapy which has limited efficacy, poor...Hepatitis C is recognized as a major threat to global public health. The current treatment of patients with chronic hepatitis C is the addition of ribavirin to interferon-based therapy which has limited efficacy, poor tolerability, and significant expense. New treatment options that are more potent and less toxic are much needed. Moreover, more effective treatment is an urgent priority for those who relapse or do not respond to current regimens. A major obstacle in combating hepatitis C virus (HCV) infection is that the fidelity of the viral replication machinery is notoriously low, thus enabling the virus to quickly develop mutations that resist compounds targeting viral enzymes. Therefore, an approach targeting the host cofactors, which are indispensable for the propagation of viruses, may be an ideal target for the development of antiviral agents because they have a lower rate of mutation than that of the viral genome, as long as they have no side effects to patients. Drugs targeting, for example, receptors of viral entry, host metabolism or nuclear receptors, which are factors required to complete the HCV life cycle, may be more effective in combating the viral infection. Targeting host cofactors of the HCV life cycle is an attractive concept because it imposes a higher genetic barrier for resistance than direct antiviral compounds. However the principle drawback of this strategy is the greater potential for cellular toxicity.展开更多
文摘Several hundred species of bacteria inhabit the gut, and affect its cell biology, morphology and homeostasis. Many bacteria are however potential pathogens, especially if the integrity of the epithelial barrier is physically or functionally breached. Conversely, the interaction between host and commensal microbes can confer important health benefits. This has led to commercial and public interest in 'probiotics', live microbes principally taken as food supplements. Might probiotics also be used in disease therapy? Experimental evidence that probiotics modulate gut physiology, particularly barrier integrity and immunological function, underpins exciting new gastroenterological research. We discuss below the scientific basis for probiotic effects and present a critical perspective for their use in relation to gastrointestinal disease.
文摘Hepatitis C is recognized as a major threat to global public health. The current treatment of patients with chronic hepatitis C is the addition of ribavirin to interferon-based therapy which has limited efficacy, poor tolerability, and significant expense. New treatment options that are more potent and less toxic are much needed. Moreover, more effective treatment is an urgent priority for those who relapse or do not respond to current regimens. A major obstacle in combating hepatitis C virus (HCV) infection is that the fidelity of the viral replication machinery is notoriously low, thus enabling the virus to quickly develop mutations that resist compounds targeting viral enzymes. Therefore, an approach targeting the host cofactors, which are indispensable for the propagation of viruses, may be an ideal target for the development of antiviral agents because they have a lower rate of mutation than that of the viral genome, as long as they have no side effects to patients. Drugs targeting, for example, receptors of viral entry, host metabolism or nuclear receptors, which are factors required to complete the HCV life cycle, may be more effective in combating the viral infection. Targeting host cofactors of the HCV life cycle is an attractive concept because it imposes a higher genetic barrier for resistance than direct antiviral compounds. However the principle drawback of this strategy is the greater potential for cellular toxicity.