The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the ...The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.展开更多
This study was conducted to study the feasibility of biochar in soil im- provement and tobacco quality. The black soil in NinganCountry of Mudanjiang was used as the material in this study, and the effects of biochar ...This study was conducted to study the feasibility of biochar in soil im- provement and tobacco quality. The black soil in NinganCountry of Mudanjiang was used as the material in this study, and the effects of biochar on tobacco-planting soil C/N, soil microorganisms, the development of tobacco, and chemical compo- nents and neutral aroma components in flue-cured tobacco werestudied. The results showed that the application of biochar at a rate of 1 800 kg/hm2 could increase soil C/N by 31.79%, and the quantity of actinomycetes in the soil was 3.8 times as much as that in control. The growth wasobviously better after biochar application, plant height and effective leaf number were significantly higher than those ofcontrol, but total sugar and nicotine were not significantly different. The application of biochar at a rate of 1 200 kg/hm2 increased the potassium content by 11%, the application of biochar at a rate of 2 400 kg/hm2 improved total sugar content by 5.40%, and the application of biochar at a rate of 1 800 kg/hm2 made the tobacco solanone content 1.97 times as that of control. Comprehensive studies showed that the application of biochar 1 200-1 800 kg/hm2 could improvesoilenvironment, and promote tobacco growth and quality.展开更多
A pot experiment was carried out to study the effects of two amendments, limeand calcium magnesium phosphate, on the growth and Cd, Pb, Zn, Cu, Mu, Fe, N, P and K uptake ofpakchoi (Brassica chinensis) in a Cd, Pb and ...A pot experiment was carried out to study the effects of two amendments, limeand calcium magnesium phosphate, on the growth and Cd, Pb, Zn, Cu, Mu, Fe, N, P and K uptake ofpakchoi (Brassica chinensis) in a Cd, Pb and Zn polluted acid soil in the southern part of China.The growth of pakchoi was apparently improved by lime and calcium magnesium phosphate application,the uptake of Cd, Pb, Cu and Zn by pakchoi was significantly depressed and the symptom caused byheavy metals pollution was eliminated. Meanwhile, the absorption of N, K and Mn was also inhibitedby these amendments. Soil pH was the main factor controlling the uptake of the heavy metals bypakchoi. This suggests that lime and calcium magnesium phosphate could be used as effectiveamendments for eliminating the toxicity of heavy metals to the vegetable and inhibiting theirabsorption by the crop.展开更多
This paper studies the effects of land cover changes on distributions andcirculations of nutrients in a terrestrial ecosystem, taking Jianou Niukenglong Grassland EcosystemExperimental Station as a case study. During ...This paper studies the effects of land cover changes on distributions andcirculations of nutrients in a terrestrial ecosystem, taking Jianou Niukenglong Grassland EcosystemExperimental Station as a case study. During a two year experiment from 1994 to 1996, the land covertypes were changed from desert slopeland to grasslands, in particular, Chamaecristarotundifolia(pers) green + Pasdum thunbergii and Glycine max var. + Pasalum thunbergii. In order tostudy land cover change effects on nutrients in the terrestrial ecosystem, we selected organicmaterials (OMs), nitrogen (N), phosphorus (P), potassium (K) and aluminum (Al) to study theirchanges in total soil nutrient concentrations, nutrient reserves in soil, distributions andreservations of nutrients in distinct grassland communities and overall nutrient contents reservedin terrestrial ecosystem, and their circulation with land cover change. The experimental resultsindicate that with the increase of vegetation coverage, the total concentrations of N, P and K growrapidly in the soil, but that of Al decreases markedly. The increases of the total concentrations ofN, P and K were mainly the consequences of changes of the factors that affect soil evolution, e.g.,soil moisture, and changes of soil evolution processes, e.g., weathering rate and the decrease ofsoil erosion. These changes were caused by land coverage growth from desert slopeland to grassland.With the change of the land cover types and the increase of land coverage, the activity of Alaccelerated as well, and the vertical penetration and lateral penetration of Al have been increased.Therefore, the loss of Al within the experimental terrestrial ecosystem was inevitable, and thetotal concentration and reserve of Al in soil have become smaller and smaller, in spite of thegrowth of grass absorbing some amounts of Al. The Al reserve has increased in vegetation, but it hasdeclined in total terrestrial ecosystem. Land cover change also affects the circulations ofnutrients in the terrestrial ecosystem and for the purpose of study on nutrient circulations, wechoose to study plant absorption, litter and reservation of nutrients to establish an index toindicate the situations of nutrient circulations within terrestrial ecosystems. The results indicatethat in the two land cover types (two grassland ecosystems), the sequence of nutrient circulationindices are N > K > P > Al in Chamaecrista rotundifolia(pers) green + Pasalum thunbergii and P > N >K > Al in Glycine max var. + Pasalum thunbergii. On the basis of the study, we can conclude thatland cover change affects both distributions and circulations in the terrestrial ecosystem, and thatdifferent changes have distinct influences on distributions and circulations. Some nutrients wereaffected differently in some contents.展开更多
Biochar(BC)is widely applied in agricultural production for its multiple uses such as carbon sequestration.However,application of BC alone has limited effect on soil fertility and crop yield,especially alkaline soil.T...Biochar(BC)is widely applied in agricultural production for its multiple uses such as carbon sequestration.However,application of BC alone has limited effect on soil fertility and crop yield,especially alkaline soil.Therefore,a pot experiment on Chinese cabbage(Brassica rapa var.glabra)was carried out in this study to investigate the effect of BC applied with organic fertilizer(OF)on alkaline soil properties and crop yield.To be specific,BC and OF were respectively applied at 0,1%,2%,and 3%,and Chinese cabbage was transplanted and cultivated for 2.5 months.Results showed that BC and OF increased the content of both organic matter and available P in alkaline soil(P<0.05).Moreover,the application of OF alone decreased the pH value but raised available N content of alkaline soil,and the application of only BC demonstrated the contrary effect(P<0.05).OF significantly improved crop yield(P<0.05),but the effect of BC was insignificant.Crop yield was the highest under the treatment of 1%BC and 3%OF.Thus,BC had limited effect on alkaline soil fertility and crop yield,but the application with OF was a good option for ameliorating alkaline soil and raising crop yield.展开更多
Biochar as a soil amendment is confronted with the challenge that it must benefit soil health as it can be by no means separated from soils once it is added. The available literature even though sparse and mostly base...Biochar as a soil amendment is confronted with the challenge that it must benefit soil health as it can be by no means separated from soils once it is added. The available literature even though sparse and mostly based on short-term studies has been encouraging and the trend obtained so far has raised many hopes. Biochar has been reported to positively impact an array of soil processes ranging from benefiting soil biology, controlling soil-borne pathogens, enhancing nitrogen fixation, improving soil physical and chemical properties,decreasing nitrate(NO-3) leaching and nitrous oxide(N2O) emission to remediation of contaminated soils. However, very little biochar is still utilized as soil amendment mainly because these benefits are yet to be quantified, and also the mechanisms by which the soil health is improved are poorly understood. Due to the infancy of research regarding this subject, there are still more questions than answers. The future research efforts must focus on carrying out long-term experiments and uncover the mechanisms underlying these processes so that key concerns surrounding the use of biochar are addressed before its large scale application is recommended.展开更多
The influences of herbicide alone and in combination with the soil amendments with contrasting resource qualities on dynamics of soil microbial biomass C (MBC), N (MBN), and P (MBP) were studied through two annu...The influences of herbicide alone and in combination with the soil amendments with contrasting resource qualities on dynamics of soil microbial biomass C (MBC), N (MBN), and P (MBP) were studied through two annual cycles in rice-wheat-summer fallow crop sequence in a tropical dryland agroecosystem. The experiment included application of herbicide (butachlor) alone or in combination with various soil amendments having equivalent amount of N in the forms of chemical fertilizer, wheat straw, Sesbania aculeata, and farm yard manure (FYM). Soil microbial biomass showed distinct temporal variations in both crop cycles, decreased from vegetative to grain-forming stage, and then increased to maximum at crop maturity stage. Soil MBC was the highest in herbicide + Sesbania aculeata treatment followed by herbicide + FYM, herbicide + wheat straw, herbicide + chemical fertilizer, and herbicide alone treatments in decreasing order during the rice-growing period. During wheat-growing period and summer fallow, soil MBC attained maximum for herbicide + wheat straw treatment whereas herbicide + FYM, herbicide + Sesbania, and herbicide + chemical fertilizer treatments showed similar levels. The overall trend of soil MBN was similar to those of soil MBC and MBP except that soil MBN was higher in herbicide + chemical fertilizer treatment over the herbicide + wheat straw treatment during rice-growing period. In spite of the addition of equivalent amount of N through exogenous soil amendments in combination with the herbicide, soil microbial biomass responded differentially to the treatments. The resource quality of the amendments had more pronounced impact on the dynamics of soil microbial biomass, which may have implications for long-term sustainability of rainfed agroecosystems in dry tropics.展开更多
To investigate the potential effects of wastewater sludge and sludge biochar on growth, yield and metal bioaccumulation of cherry tomato (Lycopersicon esculentum L.), a pot experiment was carried out under greenhous...To investigate the potential effects of wastewater sludge and sludge biochar on growth, yield and metal bioaccumulation of cherry tomato (Lycopersicon esculentum L.), a pot experiment was carried out under greenhouse environment with three different treatments, control soil (CP), soil with wastewater sludge (SS) and soil with sludge biochar (SB), to reveal the comparative effect between the amendments of wastewater sludge and sludge biochar. The soil used for pot experiment was Chromosol. Wastewater sludge and sludge biochax produced through pyrolysis process at 550 ℃ were applied at 10 t ha-1. No significant difference was found in growth and production of cherry tomatoes between wastewater sludge and sludge biochar applications to the soil. The accumulation rates of metals in the fruits were lower in the treatment with sludge biochar than in the treatment with wastewater sludge. The study highlights the benefits of risk mitigation from toxic metal accumulation in fruits using wastewater sludge and sludge biochar as soil conditioners.展开更多
Limited availability of organic matter is a problem to sustain crop growth on sodic soil. Organic soil amendments are a costeffective source of nutrients to enhance crop growth. A field study was conducted to evaluate...Limited availability of organic matter is a problem to sustain crop growth on sodic soil. Organic soil amendments are a costeffective source of nutrients to enhance crop growth. A field study was conducted to evaluate the effect of an organic soil amendment bioaugmented with plant growth-promoting fungi(SF_(OA) ) in combination with gypsum on soil properties and growth and yield attributes of Withania somnifera, one of the most valuable crops of the traditional medicinal system in the world, on a sodic soil at the Aurawan Research Farm of CSIR-National Botanical Research Institute, Lucknow, India. The SF_(OA) used was prepared by pre-enriching farm waste vermicompost with plant growth-promoting fungi before mixing with pressmud and Azadirachta indica seed cake. The application of SF_(OA) at 10 Mg ha^(-1)after gypsum(25.0 Mg ha^(-1)) treatment significantly(P < 0.05) increased root length(by 96%) and biomass(by 125%) of Withania plants compared to the control without SF_(OA) and gypsum. Similarly, the highest withanolide contents were observed in leaves and roots of Withania plants under 10 Mg ha^(-1)SF_(OA) and gypsum. Combined application of SF_(OA) and gypsum also improved physical, chemical and enzymatic properties of the soil, with the soil bulk density decreasing by 25%, water-holding capacity increasing by 121%, total organic C increasing by 90%, p H decreasing by 17% and alkaline phosphatase, β-glucosidase, dehydrogenase and cellulase activities increasing by 54%, 128%, 81% and 96%, respectively, compared to those of the control. These showed that application of the SF_(OA) tested in this study might reclaim sodic soil and further support Withania cultivation and results were better when the SF_(OA) was applied after gypsum treatment.展开更多
Vermicomposting is a biotechnological process that enables the recycling of organic waste materials into manure through the combined action of earthworms and mesophilic microorganisms. In this study, a 13-week experim...Vermicomposting is a biotechnological process that enables the recycling of organic waste materials into manure through the combined action of earthworms and mesophilic microorganisms. In this study, a 13-week experiment was carried to vermiprocess food industry sludge mixed with different bedding materials including two weeds, water hyacinth and parthenium, as well as cow dung, in different combinations employing earthworms of the species Eisenia fetida. Eight vermibins containing one kilogram of the waste mixtures (dry weight basis) were established for vermicomposting. Vermiprocessing significantly increased nitrogen, phosphorous, and potassium contents of the mixtures. However, a decrease in pH, organic carbon, and C:N ratio was observed after vermiprocessing. The heavy metal contents in the vermicomposts were higher than the initial values but within permissible limits. These results indicated that the studied wastes can be converted into good quality manure by vermiprocessing, which indicated their agricultural values as a soil conditioner if mixed with weeds in appropriate ratios.展开更多
基金This research was supported by Key Knowledge Innova-tion Project (SCXZD0102) of Institute of Applied Ecology Chinese Academy of Sciences and sponsored by the Science and Technology Department of Inner Mongolia Autonomic Region,P. R. China (2001010)
文摘The experiment was conducted at the Ganqika Sandy Land Ecological Station in Ke抏rqinzuoyihouqi County, Inner Mongolia, in a growing season from April 28 to October 28, 2001. Peat and weathered coal were added to the aeolian sandy soil in different ratios. Two-year-old Pinus sylvestris var. mongolica seedlings and plastic pots were used in the experiment. The experimental results indicated that: 1) the peat and weathered coal could significantly improve the physical and chemical prop-erties of aeolian sandy soil, and thus promoted the growth of seedlings; 2) the effect of peat on seedling growth, including height, base diameter, root length and biomass, presented an order of 8%>10%>5%>2%>0 in terms of peat contents, and the effect of weathered coal on seedling growth presented an order of 5%>8%>10%>2%>0 in terms of weathered coal contents for height and basal diameter, 5%>8%>2% >10%>0 for root length, and 5%>2%>8% >10%>0 for biomass; 3) the effects of peat were generally greater than that of weathered coal. Meanwhile, 8% peat was the best treatment to promote the growth of P. sylvestris var. mongolica seedlings.
基金Supported by Scientific and Technological Development Project of Tobacco Industry in Helongjiang Province(HYK[2015]59)~~
文摘This study was conducted to study the feasibility of biochar in soil im- provement and tobacco quality. The black soil in NinganCountry of Mudanjiang was used as the material in this study, and the effects of biochar on tobacco-planting soil C/N, soil microorganisms, the development of tobacco, and chemical compo- nents and neutral aroma components in flue-cured tobacco werestudied. The results showed that the application of biochar at a rate of 1 800 kg/hm2 could increase soil C/N by 31.79%, and the quantity of actinomycetes in the soil was 3.8 times as much as that in control. The growth wasobviously better after biochar application, plant height and effective leaf number were significantly higher than those ofcontrol, but total sugar and nicotine were not significantly different. The application of biochar at a rate of 1 200 kg/hm2 increased the potassium content by 11%, the application of biochar at a rate of 2 400 kg/hm2 improved total sugar content by 5.40%, and the application of biochar at a rate of 1 800 kg/hm2 made the tobacco solanone content 1.97 times as that of control. Comprehensive studies showed that the application of biochar 1 200-1 800 kg/hm2 could improvesoilenvironment, and promote tobacco growth and quality.
基金the National Natural Science Foundation of China(No.49671048) the Education Department of Fujian Province,China(No.K98025).
文摘A pot experiment was carried out to study the effects of two amendments, limeand calcium magnesium phosphate, on the growth and Cd, Pb, Zn, Cu, Mu, Fe, N, P and K uptake ofpakchoi (Brassica chinensis) in a Cd, Pb and Zn polluted acid soil in the southern part of China.The growth of pakchoi was apparently improved by lime and calcium magnesium phosphate application,the uptake of Cd, Pb, Cu and Zn by pakchoi was significantly depressed and the symptom caused byheavy metals pollution was eliminated. Meanwhile, the absorption of N, K and Mn was also inhibitedby these amendments. Soil pH was the main factor controlling the uptake of the heavy metals bypakchoi. This suggests that lime and calcium magnesium phosphate could be used as effectiveamendments for eliminating the toxicity of heavy metals to the vegetable and inhibiting theirabsorption by the crop.
基金Key project of Institute of Geographic Sciences and Natural Resources Research for basic research No.CXIOG-E01-01+2 种基金 Natural Science Foundation of Henan Province No.031105170 Key Young Teachers Program in Colleges and Universities of Henan Province
文摘This paper studies the effects of land cover changes on distributions andcirculations of nutrients in a terrestrial ecosystem, taking Jianou Niukenglong Grassland EcosystemExperimental Station as a case study. During a two year experiment from 1994 to 1996, the land covertypes were changed from desert slopeland to grasslands, in particular, Chamaecristarotundifolia(pers) green + Pasdum thunbergii and Glycine max var. + Pasalum thunbergii. In order tostudy land cover change effects on nutrients in the terrestrial ecosystem, we selected organicmaterials (OMs), nitrogen (N), phosphorus (P), potassium (K) and aluminum (Al) to study theirchanges in total soil nutrient concentrations, nutrient reserves in soil, distributions andreservations of nutrients in distinct grassland communities and overall nutrient contents reservedin terrestrial ecosystem, and their circulation with land cover change. The experimental resultsindicate that with the increase of vegetation coverage, the total concentrations of N, P and K growrapidly in the soil, but that of Al decreases markedly. The increases of the total concentrations ofN, P and K were mainly the consequences of changes of the factors that affect soil evolution, e.g.,soil moisture, and changes of soil evolution processes, e.g., weathering rate and the decrease ofsoil erosion. These changes were caused by land coverage growth from desert slopeland to grassland.With the change of the land cover types and the increase of land coverage, the activity of Alaccelerated as well, and the vertical penetration and lateral penetration of Al have been increased.Therefore, the loss of Al within the experimental terrestrial ecosystem was inevitable, and thetotal concentration and reserve of Al in soil have become smaller and smaller, in spite of thegrowth of grass absorbing some amounts of Al. The Al reserve has increased in vegetation, but it hasdeclined in total terrestrial ecosystem. Land cover change also affects the circulations ofnutrients in the terrestrial ecosystem and for the purpose of study on nutrient circulations, wechoose to study plant absorption, litter and reservation of nutrients to establish an index toindicate the situations of nutrient circulations within terrestrial ecosystems. The results indicatethat in the two land cover types (two grassland ecosystems), the sequence of nutrient circulationindices are N > K > P > Al in Chamaecrista rotundifolia(pers) green + Pasalum thunbergii and P > N >K > Al in Glycine max var. + Pasalum thunbergii. On the basis of the study, we can conclude thatland cover change affects both distributions and circulations in the terrestrial ecosystem, and thatdifferent changes have distinct influences on distributions and circulations. Some nutrients wereaffected differently in some contents.
文摘Biochar(BC)is widely applied in agricultural production for its multiple uses such as carbon sequestration.However,application of BC alone has limited effect on soil fertility and crop yield,especially alkaline soil.Therefore,a pot experiment on Chinese cabbage(Brassica rapa var.glabra)was carried out in this study to investigate the effect of BC applied with organic fertilizer(OF)on alkaline soil properties and crop yield.To be specific,BC and OF were respectively applied at 0,1%,2%,and 3%,and Chinese cabbage was transplanted and cultivated for 2.5 months.Results showed that BC and OF increased the content of both organic matter and available P in alkaline soil(P<0.05).Moreover,the application of OF alone decreased the pH value but raised available N content of alkaline soil,and the application of only BC demonstrated the contrary effect(P<0.05).OF significantly improved crop yield(P<0.05),but the effect of BC was insignificant.Crop yield was the highest under the treatment of 1%BC and 3%OF.Thus,BC had limited effect on alkaline soil fertility and crop yield,but the application with OF was a good option for ameliorating alkaline soil and raising crop yield.
文摘Biochar as a soil amendment is confronted with the challenge that it must benefit soil health as it can be by no means separated from soils once it is added. The available literature even though sparse and mostly based on short-term studies has been encouraging and the trend obtained so far has raised many hopes. Biochar has been reported to positively impact an array of soil processes ranging from benefiting soil biology, controlling soil-borne pathogens, enhancing nitrogen fixation, improving soil physical and chemical properties,decreasing nitrate(NO-3) leaching and nitrous oxide(N2O) emission to remediation of contaminated soils. However, very little biochar is still utilized as soil amendment mainly because these benefits are yet to be quantified, and also the mechanisms by which the soil health is improved are poorly understood. Due to the infancy of research regarding this subject, there are still more questions than answers. The future research efforts must focus on carrying out long-term experiments and uncover the mechanisms underlying these processes so that key concerns surrounding the use of biochar are addressed before its large scale application is recommended.
基金financially supported by University Grants Commission,New Delhi,India in form of a major research project(No.SR36-32 2008) and University Research Fellowships to Ms.Alka Singh and Mr.Mahesh Kumar Singh
文摘The influences of herbicide alone and in combination with the soil amendments with contrasting resource qualities on dynamics of soil microbial biomass C (MBC), N (MBN), and P (MBP) were studied through two annual cycles in rice-wheat-summer fallow crop sequence in a tropical dryland agroecosystem. The experiment included application of herbicide (butachlor) alone or in combination with various soil amendments having equivalent amount of N in the forms of chemical fertilizer, wheat straw, Sesbania aculeata, and farm yard manure (FYM). Soil microbial biomass showed distinct temporal variations in both crop cycles, decreased from vegetative to grain-forming stage, and then increased to maximum at crop maturity stage. Soil MBC was the highest in herbicide + Sesbania aculeata treatment followed by herbicide + FYM, herbicide + wheat straw, herbicide + chemical fertilizer, and herbicide alone treatments in decreasing order during the rice-growing period. During wheat-growing period and summer fallow, soil MBC attained maximum for herbicide + wheat straw treatment whereas herbicide + FYM, herbicide + Sesbania, and herbicide + chemical fertilizer treatments showed similar levels. The overall trend of soil MBN was similar to those of soil MBC and MBP except that soil MBN was higher in herbicide + chemical fertilizer treatment over the herbicide + wheat straw treatment during rice-growing period. In spite of the addition of equivalent amount of N through exogenous soil amendments in combination with the herbicide, soil microbial biomass responded differentially to the treatments. The resource quality of the amendments had more pronounced impact on the dynamics of soil microbial biomass, which may have implications for long-term sustainability of rainfed agroecosystems in dry tropics.
文摘To investigate the potential effects of wastewater sludge and sludge biochar on growth, yield and metal bioaccumulation of cherry tomato (Lycopersicon esculentum L.), a pot experiment was carried out under greenhouse environment with three different treatments, control soil (CP), soil with wastewater sludge (SS) and soil with sludge biochar (SB), to reveal the comparative effect between the amendments of wastewater sludge and sludge biochar. The soil used for pot experiment was Chromosol. Wastewater sludge and sludge biochax produced through pyrolysis process at 550 ℃ were applied at 10 t ha-1. No significant difference was found in growth and production of cherry tomatoes between wastewater sludge and sludge biochar applications to the soil. The accumulation rates of metals in the fruits were lower in the treatment with sludge biochar than in the treatment with wastewater sludge. The study highlights the benefits of risk mitigation from toxic metal accumulation in fruits using wastewater sludge and sludge biochar as soil conditioners.
文摘Limited availability of organic matter is a problem to sustain crop growth on sodic soil. Organic soil amendments are a costeffective source of nutrients to enhance crop growth. A field study was conducted to evaluate the effect of an organic soil amendment bioaugmented with plant growth-promoting fungi(SF_(OA) ) in combination with gypsum on soil properties and growth and yield attributes of Withania somnifera, one of the most valuable crops of the traditional medicinal system in the world, on a sodic soil at the Aurawan Research Farm of CSIR-National Botanical Research Institute, Lucknow, India. The SF_(OA) used was prepared by pre-enriching farm waste vermicompost with plant growth-promoting fungi before mixing with pressmud and Azadirachta indica seed cake. The application of SF_(OA) at 10 Mg ha^(-1)after gypsum(25.0 Mg ha^(-1)) treatment significantly(P < 0.05) increased root length(by 96%) and biomass(by 125%) of Withania plants compared to the control without SF_(OA) and gypsum. Similarly, the highest withanolide contents were observed in leaves and roots of Withania plants under 10 Mg ha^(-1)SF_(OA) and gypsum. Combined application of SF_(OA) and gypsum also improved physical, chemical and enzymatic properties of the soil, with the soil bulk density decreasing by 25%, water-holding capacity increasing by 121%, total organic C increasing by 90%, p H decreasing by 17% and alkaline phosphatase, β-glucosidase, dehydrogenase and cellulase activities increasing by 54%, 128%, 81% and 96%, respectively, compared to those of the control. These showed that application of the SF_(OA) tested in this study might reclaim sodic soil and further support Withania cultivation and results were better when the SF_(OA) was applied after gypsum treatment.
基金Supported by the University Grants Commission(UGC),India
文摘Vermicomposting is a biotechnological process that enables the recycling of organic waste materials into manure through the combined action of earthworms and mesophilic microorganisms. In this study, a 13-week experiment was carried to vermiprocess food industry sludge mixed with different bedding materials including two weeds, water hyacinth and parthenium, as well as cow dung, in different combinations employing earthworms of the species Eisenia fetida. Eight vermibins containing one kilogram of the waste mixtures (dry weight basis) were established for vermicomposting. Vermiprocessing significantly increased nitrogen, phosphorous, and potassium contents of the mixtures. However, a decrease in pH, organic carbon, and C:N ratio was observed after vermiprocessing. The heavy metal contents in the vermicomposts were higher than the initial values but within permissible limits. These results indicated that the studied wastes can be converted into good quality manure by vermiprocessing, which indicated their agricultural values as a soil conditioner if mixed with weeds in appropriate ratios.