Most defective and unwanted cells die by apoptosis, cells without damaging the surrounding tissue. Once a an exquisitely controlled genetic programme for removing such cell has committed to apoptosis, the process is r...Most defective and unwanted cells die by apoptosis, cells without damaging the surrounding tissue. Once a an exquisitely controlled genetic programme for removing such cell has committed to apoptosis, the process is remarkably efficient, and is completed within a few minutes of initiation. This point of no retum for an apoptotic cell is commonly held to be the point at which the outer mitochondrial membrane is permeabilised, a process regulated by the Bcl-2 family of proteins. How these proteins regulate this decision point is central to diseases such as cancer where apoptotic control is lost. In this review, we will discuss apoptotic signalling and how a cell makes the irreversible decision to die. We will focus on one set of survival signals, those derived by cell adhesion to the extracellular matrix (ECM), and use these to highlight the complexities of apoptotic signalling. In particular, we will illustrate how multiple signalling pathways converge to determine critical cell fate decisions.展开更多
Interleukin-4 is a cytokine produced by activated T cells, mast cells, and basophils that elicits many important biological responses[1] (see Tab 1). These responses range from the regulation of helper T cell differen...Interleukin-4 is a cytokine produced by activated T cells, mast cells, and basophils that elicits many important biological responses[1] (see Tab 1). These responses range from the regulation of helper T cell differentiation[2] and the production of IgE[3] to the regulation of the adhesive properties of endothelial cells via VCAM-1[4]. In keeping with these diverse biological effects, high-affinity binding sites for IL-4 (Kd 20 to 300 pM) have been detected on many hematopoietic and non-hematopoietic cell types at levels ranging from 50 to 5000 sites per cell[5],This review will focus on the discrete signal transduction pathways activated by the IL-4 receptor and the coordination of these individual pathways in the regulation of a final biological outcome.展开更多
文摘Most defective and unwanted cells die by apoptosis, cells without damaging the surrounding tissue. Once a an exquisitely controlled genetic programme for removing such cell has committed to apoptosis, the process is remarkably efficient, and is completed within a few minutes of initiation. This point of no retum for an apoptotic cell is commonly held to be the point at which the outer mitochondrial membrane is permeabilised, a process regulated by the Bcl-2 family of proteins. How these proteins regulate this decision point is central to diseases such as cancer where apoptotic control is lost. In this review, we will discuss apoptotic signalling and how a cell makes the irreversible decision to die. We will focus on one set of survival signals, those derived by cell adhesion to the extracellular matrix (ECM), and use these to highlight the complexities of apoptotic signalling. In particular, we will illustrate how multiple signalling pathways converge to determine critical cell fate decisions.
文摘Interleukin-4 is a cytokine produced by activated T cells, mast cells, and basophils that elicits many important biological responses[1] (see Tab 1). These responses range from the regulation of helper T cell differentiation[2] and the production of IgE[3] to the regulation of the adhesive properties of endothelial cells via VCAM-1[4]. In keeping with these diverse biological effects, high-affinity binding sites for IL-4 (Kd 20 to 300 pM) have been detected on many hematopoietic and non-hematopoietic cell types at levels ranging from 50 to 5000 sites per cell[5],This review will focus on the discrete signal transduction pathways activated by the IL-4 receptor and the coordination of these individual pathways in the regulation of a final biological outcome.