The diversity and distribution patterns of soil nematode communities in phaeozem agroecosystems of Northeast China were assessed to evaluate nematode taxonomic diversity and functional diversity in relation to climati...The diversity and distribution patterns of soil nematode communities in phaeozem agroecosystems of Northeast China were assessed to evaluate nematode taxonomic diversity and functional diversity in relation to climatic condition and soil characteristics in human modified landscape. Along the latitudinal gradient, soil samples were collected from north (Hailun) to south (Gongzhuling) down to a depth of 100 cm with intervals of 030, 20-40, 40-60, 60-80, and 80-100 cm. The nematode abundance and taxonomic diversity (generic richness) were lower at Hailun than at other sites, and higher values of evenness were observed at Hailun and Harbin than at Dehui and Gongzhuling. Nematode faunal analysis revealed that soil food web at Hailun was sueeessionally more mature or structured, and the environment little disturbed, while at Harbin and Gongzhuling, the soil food web was degraded with stressed environment. The environmental variables relevant in explaining the patterns of nematode distribution and diversity in phaeozem agroecosystems, using canonical correspondence analysis (CCA), were the mean annual temperature, total nitrogen, electrical conductivity, mean annual precipitation, and other soil properties. Among these variables, the mean annual temperature was a relatively important factor, which could explain 29.05% of the variations in nematode composition.展开更多
Studying the relationship between climate factors and soil organic carbon (SOC) is vitally important. However, how SOC responses to climate (temperature and precipitation) at cohesive extents is poorly studied. Tw...Studying the relationship between climate factors and soil organic carbon (SOC) is vitally important. However, how SOC responses to climate (temperature and precipitation) at cohesive extents is poorly studied. Two transects of approximately the same length (transect P and transect T) were selected to examine the variation of SOC content in relation to mean annual temperature (MAT) and mean annual precipitation (MAP). The coefficients of partial correlation between SOC density and MAT (Rt) and MAP (Rp) were determined to quantify the relationships between SOC density and the two climate factors. The results indicated that for transect T, Rt was statistically significant once the extent level was greater than or equal to two fundamental extent units, while for transect P, Rp showed statistical significance only at extent levels which were greater than two fundamental extent traits. At the same extent levels but in different transects, Rts exhibited no zonal difference, but Rps did once the extent level was greater than two fundamental extent units. Therefore, to study the relationship between SOC density and different climate factors, different minimum extent levels should be ex- amined. The results of this paper could deepen the understanding of the impacts that SOC pool has on terrestrial ecosystem and global carbon cycling.展开更多
The patterns of soil nitrogen (N) isotope composition at large spatial and temporal scales and their relationships to environmental factors illustrate N cycle and sources of N, and are integrative indicators of the ...The patterns of soil nitrogen (N) isotope composition at large spatial and temporal scales and their relationships to environmental factors illustrate N cycle and sources of N, and are integrative indicators of the terrestrial N cycle and its response to global change. The objectives of this study were: i) to investigate the patterns of soil N content and natural abundance of 15N (δ15N) values in different ecosystem types and soil profiles on the Qinghai-Tibetan Plateau; ii) to examine the effects of climatic factors and soil characteristics on the patterns of soil N content and soil δ15N values; and iii) to test the relationship between soil δ15N values and soil C/N ratios across ecosystems and soil profiles. Soil profiles were sampled at 51 sites along two transects 1 875 km in length and 200 km apart and distributed in forest, meadow and steppe on the Qinghai-Tibetan Plateau. Each site was sampled every 10 cm from a soil depth of 0 to 40 cm and each sample was analyzed for soil N content and δ15N values. Our results indicated that soil N and 515N values (0-40 cm) in meadows were much higher than in desert steppe. Soil N decreased with soil depth for each ecosystem, while variations of soil ~15N values along soil profiles were not statistically significant among most ecosystems but for mountain meadow, lowland meadow, and temperate steppe where soil δ15N values tended to increase with soil depth. The parabolic relationship between soil δ15N values and mean annual precipitation indicated that soil δ15N values increased with increasing precipitation in desert steppe up to 500 mm, and then decreased with increasing precipitation across all other ecosystems. Moreover, the parabolic relationship between δ15N values and mean annual temperature existed in all individual ecosystem types. Soil N and δ15N values (0-0 cm) increased with an increase in soil silt and clay contents. Furthermore, a threshold of C/N ratio of about 11 divided the parabolic relationship between soil δ15N values and soil C/N ratios into positive (C/N 〈 11) and negative (C/N 〉 11) parts, which was valid across all ecosystems and soil profiles. The large explanatory power of soil C/N ratios for soil δ15N values suggested that C and N concentrations, being strongly controlled by precipitation and temperature, were the primary factors determining patterns of soil δ15N on the Qinghai-Tibetan Plateau.展开更多
Based on the carbon fluxes measured over the grassland ecosystems in Inner Mongolia (UG79 site), Loess Plateau (SACOL site), and Tongyu, Jilin Province (TY site) in the semiarid areas from 2007 to 2008 with the ...Based on the carbon fluxes measured over the grassland ecosystems in Inner Mongolia (UG79 site), Loess Plateau (SACOL site), and Tongyu, Jilin Province (TY site) in the semiarid areas from 2007 to 2008 with the eddy covariance method, we have investigated the carbon exchange processes over semiarid grassland ecosystem and its main affecting environmental variables. The precipitations at UG79 and TY sites in 2007 were below the historical average, especially for TY site, which was 50% be- low the historical average annual precipitation. The precipitation in SACOL site was close to average in 2007 but below average in 2008. The variation of monthly diurnal average NEE showed that the diurnal mean NEE decreased in the order of TY site, UG79 site, and SACOL site. However, a longer net carbon uptake period was observed at SACOL site. The diurnal course of NEE at UG79 site was similar between 2007 and 2008. The diurnal average NEE remained large during July and August in growing sea- son (May to September) at UG79 site, with maximum values approaching 0.08 mg C m^-2 s^-1 in August of 2008. The diurnal av- erage NEE of 2007 was larger than 2008 at SACOL site, with maximum values of 0.07 mg C m^-2 sq in September of 2007. A shorter carbon uptake period was recorded in 2007 at TY site, lasting from July to August. A larger diurnal average NEE oc- curred in 2008 at TY site, with maximum values of 0.12 mg C m^-2 s^-1. The ecosystem respirations of three sites were controlled by both soil temperature and soil volumetric water content (at a depth of 5 cm below the land surface). Both UG79 site and SACOL site acted as a carbon sink during the growing periods of 2007 and 2008. Annual NEE in the growing seasons of 2007 and 2008 ranged from -68 to -50 g C m^-2 at UG79 site and from -109 to -55 g C m^-2at SACOL site. Alternation between car- bon source and carbon sink was found at TY site, with respective values of annual NEE in the growing seasons of 0.32 g C m^-2 and -73 g C m^-2 in 2007 and 2008. The magnitude and duration of carbon uptake depended mainly on the amount and timing of precipitation and the timing of the first effective rainfall during the growing season in semiarid grassland ecosystems.展开更多
基金supported by the National Key Basic Research Support Foundation of China (No.2005CB121105)the National Natural Science Foundation of China (No.30670379)
文摘The diversity and distribution patterns of soil nematode communities in phaeozem agroecosystems of Northeast China were assessed to evaluate nematode taxonomic diversity and functional diversity in relation to climatic condition and soil characteristics in human modified landscape. Along the latitudinal gradient, soil samples were collected from north (Hailun) to south (Gongzhuling) down to a depth of 100 cm with intervals of 030, 20-40, 40-60, 60-80, and 80-100 cm. The nematode abundance and taxonomic diversity (generic richness) were lower at Hailun than at other sites, and higher values of evenness were observed at Hailun and Harbin than at Dehui and Gongzhuling. Nematode faunal analysis revealed that soil food web at Hailun was sueeessionally more mature or structured, and the environment little disturbed, while at Harbin and Gongzhuling, the soil food web was degraded with stressed environment. The environmental variables relevant in explaining the patterns of nematode distribution and diversity in phaeozem agroecosystems, using canonical correspondence analysis (CCA), were the mean annual temperature, total nitrogen, electrical conductivity, mean annual precipitation, and other soil properties. Among these variables, the mean annual temperature was a relatively important factor, which could explain 29.05% of the variations in nematode composition.
基金Under the auspices of Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issues of Chinese Academy of Sciences(No.XDA05050503)National Key Technology Research and Development Program of China(No.2013BAD11B00)National Natural Science Foundation of China(No.41301242)
文摘Studying the relationship between climate factors and soil organic carbon (SOC) is vitally important. However, how SOC responses to climate (temperature and precipitation) at cohesive extents is poorly studied. Two transects of approximately the same length (transect P and transect T) were selected to examine the variation of SOC content in relation to mean annual temperature (MAT) and mean annual precipitation (MAP). The coefficients of partial correlation between SOC density and MAT (Rt) and MAP (Rp) were determined to quantify the relationships between SOC density and the two climate factors. The results indicated that for transect T, Rt was statistically significant once the extent level was greater than or equal to two fundamental extent units, while for transect P, Rp showed statistical significance only at extent levels which were greater than two fundamental extent traits. At the same extent levels but in different transects, Rts exhibited no zonal difference, but Rps did once the extent level was greater than two fundamental extent units. Therefore, to study the relationship between SOC density and different climate factors, different minimum extent levels should be ex- amined. The results of this paper could deepen the understanding of the impacts that SOC pool has on terrestrial ecosystem and global carbon cycling.
基金Supported by the National Basic Research Program(973 Program)of China(No.2010CB833503)the Chinese Academy of Sciences for Strategic Priority Research Program(No.XDA05050602)+1 种基金the Key Projects in the National Science and Technology Pillar Program(No.2013BAC03B03)the Open Research Fund of Chinese Academy of Sciences(No.O8R8B161PA)
文摘The patterns of soil nitrogen (N) isotope composition at large spatial and temporal scales and their relationships to environmental factors illustrate N cycle and sources of N, and are integrative indicators of the terrestrial N cycle and its response to global change. The objectives of this study were: i) to investigate the patterns of soil N content and natural abundance of 15N (δ15N) values in different ecosystem types and soil profiles on the Qinghai-Tibetan Plateau; ii) to examine the effects of climatic factors and soil characteristics on the patterns of soil N content and soil δ15N values; and iii) to test the relationship between soil δ15N values and soil C/N ratios across ecosystems and soil profiles. Soil profiles were sampled at 51 sites along two transects 1 875 km in length and 200 km apart and distributed in forest, meadow and steppe on the Qinghai-Tibetan Plateau. Each site was sampled every 10 cm from a soil depth of 0 to 40 cm and each sample was analyzed for soil N content and δ15N values. Our results indicated that soil N and 515N values (0-40 cm) in meadows were much higher than in desert steppe. Soil N decreased with soil depth for each ecosystem, while variations of soil ~15N values along soil profiles were not statistically significant among most ecosystems but for mountain meadow, lowland meadow, and temperate steppe where soil δ15N values tended to increase with soil depth. The parabolic relationship between soil δ15N values and mean annual precipitation indicated that soil δ15N values increased with increasing precipitation in desert steppe up to 500 mm, and then decreased with increasing precipitation across all other ecosystems. Moreover, the parabolic relationship between δ15N values and mean annual temperature existed in all individual ecosystem types. Soil N and δ15N values (0-0 cm) increased with an increase in soil silt and clay contents. Furthermore, a threshold of C/N ratio of about 11 divided the parabolic relationship between soil δ15N values and soil C/N ratios into positive (C/N 〈 11) and negative (C/N 〉 11) parts, which was valid across all ecosystems and soil profiles. The large explanatory power of soil C/N ratios for soil δ15N values suggested that C and N concentrations, being strongly controlled by precipitation and temperature, were the primary factors determining patterns of soil δ15N on the Qinghai-Tibetan Plateau.
基金supported by the National Basic Research Program of China (Grant Nos.2010CB951801and 2006CB400501)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No.41021004)
文摘Based on the carbon fluxes measured over the grassland ecosystems in Inner Mongolia (UG79 site), Loess Plateau (SACOL site), and Tongyu, Jilin Province (TY site) in the semiarid areas from 2007 to 2008 with the eddy covariance method, we have investigated the carbon exchange processes over semiarid grassland ecosystem and its main affecting environmental variables. The precipitations at UG79 and TY sites in 2007 were below the historical average, especially for TY site, which was 50% be- low the historical average annual precipitation. The precipitation in SACOL site was close to average in 2007 but below average in 2008. The variation of monthly diurnal average NEE showed that the diurnal mean NEE decreased in the order of TY site, UG79 site, and SACOL site. However, a longer net carbon uptake period was observed at SACOL site. The diurnal course of NEE at UG79 site was similar between 2007 and 2008. The diurnal average NEE remained large during July and August in growing sea- son (May to September) at UG79 site, with maximum values approaching 0.08 mg C m^-2 s^-1 in August of 2008. The diurnal av- erage NEE of 2007 was larger than 2008 at SACOL site, with maximum values of 0.07 mg C m^-2 sq in September of 2007. A shorter carbon uptake period was recorded in 2007 at TY site, lasting from July to August. A larger diurnal average NEE oc- curred in 2008 at TY site, with maximum values of 0.12 mg C m^-2 s^-1. The ecosystem respirations of three sites were controlled by both soil temperature and soil volumetric water content (at a depth of 5 cm below the land surface). Both UG79 site and SACOL site acted as a carbon sink during the growing periods of 2007 and 2008. Annual NEE in the growing seasons of 2007 and 2008 ranged from -68 to -50 g C m^-2 at UG79 site and from -109 to -55 g C m^-2at SACOL site. Alternation between car- bon source and carbon sink was found at TY site, with respective values of annual NEE in the growing seasons of 0.32 g C m^-2 and -73 g C m^-2 in 2007 and 2008. The magnitude and duration of carbon uptake depended mainly on the amount and timing of precipitation and the timing of the first effective rainfall during the growing season in semiarid grassland ecosystems.