Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hyg...Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hygrophytes. We surveyed the composition, delta(13)C values and proline concentration of PFGs in eight different plant communities along a soil moisture gradient. Results show that: (1) PFGs occurred variously in eight steppe communities with different soil moisture status. In wetter habitats, hygromesophytes and hygrophytes were more abundant and accounted for the majority of aboveground biomass, whereas xerophytes and mesoxerophytes became more conspicuous in dryer habitats; (2) the numerical order of the mean delta(13)C values of PFGs is as follows: xerophytes (-26.38parts per thousand) = mesoxerophytes (-26.51parts per thousand) > xeromesophytes (-27.02parts per thousand) > mesophytes (-27.56parts per thousand) = hygromesophytes and hygrophytes (-27.80parts per thousand); (3) xerophytes maintained relative higher delta(13)C values and water use efficiency (WUE) in habitats of different water availability, whereas delta(13)C values of xeromesophytes were more sensitive to change in soil water availability; (4) From xerophytes to hygrophytes, their proline content markedly increased. Significantly positive correlations existed between proline and biomass or delta(13)C values of different water ecological groups.展开更多
Whole_growing season pot experiments were conducted to examine the response of growth and water use efficiency ( WUE ) of spring wheat ( Triticum aestivum L. cv. Gaoyuan 602) to CO 2 enrichment. Wheat plants wer...Whole_growing season pot experiments were conducted to examine the response of growth and water use efficiency ( WUE ) of spring wheat ( Triticum aestivum L. cv. Gaoyuan 602) to CO 2 enrichment. Wheat plants were grown in open_top chambers (OTCs) subject to two concentrations of CO 2 ()(350 and 700 μL/L, hereafter 'ambient' and 'elevated' respectively) and three soil water levels (80%, 60% and 40% field water capacity ( FWC ), hereafter 'high soil moisture', 'medium soil moisture' and 'low soil moisture' respectively). Elevated CO 2 greatly increased leaf net photosynthesis ( Pn ) at all three soil water levels. The Pn of plants growing under elevated was 22% lower than that of plants growing at ambient when measured with the same (700 μL/L). Plant growth was enhanced by elevated throughout the growing season, with an increase of 14.8% in shoot dry weight at harvest under high soil moisture, and leaf area was increased by about 20% at all three soil water levels. Elevated in combination with high soil moisture increased the ratio of plant shoot dry weight to height by 15.7%, while this ratio was decreased by over 50% when plants were subject to drought. Elevated also increased the water use efficiency of wheat, mainly due to decreases in transpiration and cumulative consumption of water, and an increase in shoot dry weight, with the biggest value of 30% occurring at high soil water moisture level. Compared to high soil moisture, drought decreased shoot dry weight by 72% under ambient , and by 76% under elevated . Similarly, drought also reduced WUE by 19% under ambient , and 23% under elevated . Our results indicate that: (1) elevated can increase the photosynthetic rates, growth and WUE of wheat plants; (2) long_term exposure to high may result in lower photosynthetic capacity; (3) high stimulates plants lateral growth more than vertical growth; (4) the effects of CO 2 enrichment on plants depend on soil water status, with plants benefiting more from CO 2 enrichment if sufficient water is supplied; and (5) drought may cause relatively more reduction in plant growth and WUE under future elevated conditions.展开更多
The concept,merits and domestic project examples of ecological disposal technique of dispersal sewage were introduced in detail.It was pointed out that the ecological disposal of dispersal sewage was investment-saved,...The concept,merits and domestic project examples of ecological disposal technique of dispersal sewage were introduced in detail.It was pointed out that the ecological disposal of dispersal sewage was investment-saved,energy consumption-reduced and ecological balance-protected advanced technology.This technology was suitable for small community,dispersal units and agencies,villages and other regions without pipe network pervaded and an available approach for solving present environment-protection problems and keeping sustainable development in China.展开更多
Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fi...Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fisch.ex Turcz) from the broadleaved/Korean pine forest in Changbai Mountain. Leaf growth, water transpiration and photosynthesis were compared for each species under three soil moisture conditions: 85%-100% (high water, CK), 65%-85% (Medium water, MW) and 45%-65% (low water, LW) of 37.4% water-holding capacity in field. The results showed that the characteristic of typical drought-resistance of the leaves is significantly developed. The net photosynthetic rate and water use efficiency of Fraxinus mandshurica were higher in MW than those in CK. But for the other four species, the net photosynthetic rate and water use efficiency in CK were lower than those in MW and LW. The transpiration rate responding to soil moistures varied from species to species.展开更多
[Objective] This study aimed to explore the characteristics of ecological water requirement in Maijishan Scenic Spot. [Methed] The characteristics of ecologi- cal water requirement in Maijishan Scenic Spot were analyz...[Objective] This study aimed to explore the characteristics of ecological water requirement in Maijishan Scenic Spot. [Methed] The characteristics of ecologi- cal water requirement in Maijishan Scenic Spot were analyzed based on,the data of soil humidity and meteorology of the spot. [Result] The result showed that the actual annual ecological water requirement in the spot was 678×10^6 m^3, and the proportion of soil water and evapotranspiration were 21% and 79%, respectively; the minimum annual ecological water requirement quota in the spot was 480.27×10^6 m^3, and the proportion of soil water and evapotranspiration were 16% and 84%, respectively; the minimum annual suitable ecological water requirement quota in the spot was 624.22×10^6 m^3, and the proportion of soil water and evapotranspiration were 18% and 82%, respectively. The precipitation was 614×10^6 m^3, and consumptive water surplus reached up to 78×10^6 m^3. The years when the precipitation was higher than the evapotranspiration accounted for 76%. Since 1980s, the evapotranspiration showed a linearly increasing trend. The precipitation was higher than the evapotranspiration from Jun. to Oct. and less than the evapotranspiration from Nov. to Dec. and Jan. to May. Evapotranspiration water requirement was regulated by soil water. The dis- parity between precipitation and evapotranspiration was huge in spring, thus having certain influence on waterfalls and streams in the spot. [Conclusion] The results of this study provided a basis for the rational use and long-term planning of the water sources in Maijishan Scenic Spot.展开更多
The ecological protection of the watersheds in China is being confronted with a lot of problems such as soil and water erosion, water pollution at present. Therefore watershed eco-compensation is becoming a question o...The ecological protection of the watersheds in China is being confronted with a lot of problems such as soil and water erosion, water pollution at present. Therefore watershed eco-compensation is becoming a question of common interest. Based on the analyses of the major problems and their origins in the watershed protection in China, the paper discusses the concerned policies including relative rules and laws, financial policies and water right transaction policies. Simultaneously the paper reviews the practices carried out in China, including the ecological construction project in the western China, the trans-provincial eco-compensation practice and the small watershed eco-compensation practice. According to the present situation of eco-compensation practices and the future policy requirement, this paper finally puts forward four key problems to be solved in the watershed eco-compensation of China in the future.展开更多
The fact of, present is the key of the past, will help us to use paleosols properties as indicators of the ecological characteristics of past .time, particularly the paleoclimate. In this respect the micro- morphologi...The fact of, present is the key of the past, will help us to use paleosols properties as indicators of the ecological characteristics of past .time, particularly the paleoclimate. In this respect the micro- morphological properties showed to be a very good indicator. Therefore, for investigating of climate change in Ardakan-Yazd plain, Central Iran 9 pedons were digged and described. Yazd has an arid climate with less than 100 mm annual precipitation and more than 22℃ mean annual temperature (Aridic-hyper thermic soil moisture and temperature regions, respectively). Based on the morphological and physicochemical analysis Arglic, Calcic and Gypsic diagnostic horizons have been distinguished in these soils. Thin section studied showed that the illuviated form of clay includes, infillings on channel, coating on pendant, on nodules and on grains, at lower depths and also juxtaposed calcite needles on void argillan at upper part of the profiles. Mineralogical result showed fine clay in arglic horizon, too. Considering depth and forms of these pedofeatures, we concluded that, the observed illuviated clays at lower depth must be the result of the more humid climate of the past, where the carbonates have been removed completely as pendant, nodules or coating to considerable depth, following processes, clay has been dispersed and also trans located to these depths. In contrast to these features, the juxtaposed needle calcite at the shallower depth is probably the result of drier climate of today.展开更多
The mainstreams of lake optics research in recent decades include optical properties of lakewater, observation, transmission and calculation of underwater radiation, determination of absorption coefficient S of yellow...The mainstreams of lake optics research in recent decades include optical properties of lakewater, observation, transmission and calculation of underwater radiation, determination of absorption coefficient S of yellow substance, influence of UV-B radiation of lake primary productivity by bio-optical model. Major lake optics applications, such as calculation of lake primary productivity and chl-a, analysis of factors restricting eu- trophication, and protection against lake eutrophication are summarized.展开更多
Based on the theories of landscape ecology, landscape eco environment in the control watershed by reservoir of Erlong Mountain in Heilongjiang Province was analyzed and assessed by using GIS technique and statistical ...Based on the theories of landscape ecology, landscape eco environment in the control watershed by reservoir of Erlong Mountain in Heilongjiang Province was analyzed and assessed by using GIS technique and statistical model of Principal Component Analysis and Spatial Cluster Analysis. It is found that 100.08km2(36%)of the total area is in the state of kilter,85.73km2(31%)of the total area is in the state of general,and 47.26km2(17%)and 15.48km2(16%)is in the relatively poor state and ideal state. According to landscape ecological structure,there are three landscape function areas being planned and designed. 1) Agricultural landscape function area: its developmental direction is tour agriculture and high benefit agriculture. 2) Eco environment protected function area:the direction of development and utilization of this region is to develop vigorously forest for soil and water conservation, and try to increase the rate of vegetation cover. 3) Forest landscape function area: rational cut and utilization of forest resources, space optimization disposal of category of forest, foster of forest and protection of wildwood will become the main development directions for this region. This study trys to provide scientific foundation for ecological restoration of the whole valley and its sustainable development.展开更多
Implementation of payments for watershed services(PWS) has been regarded as a promising approach to coordinating the interests of upstream and downstream ecosystem services stakeholders. There is growing concern about...Implementation of payments for watershed services(PWS) has been regarded as a promising approach to coordinating the interests of upstream and downstream ecosystem services stakeholders. There is growing concern about whether PWS programs have achieved their original environmental goals of improving water quality and quantity, as well as the ancillary objective of increasing the welfare of local people. We start with an overview of PWS schemes and focus on their particularity and implementation mechanisms in China. We proceed to review 62 active PWS cases and examine their environmental performance in detail. The resulting findings show that PWS schemes have been able to reduce water pollution to some extent by establishing collaborative upstream/downstream watershed management policies, thereby improving water quality and quantity, as well as by making government officials more responsible for water resource management. In addition, their continued effectiveness in light of present challenges such as water-quality data availability is discussed. Chinese PWS schemes and their implementation mechanisms also provide information useful in monitoring environmental outcomes and guiding future designs of PWS programs in other regions.展开更多
This study examined the spatiotemporal dynamics of colored dissolved organic matter (CDOM) and spectral slope (S), and further to analyze its sources in three productive water supplies (Eagle Creek, Geist and Mor...This study examined the spatiotemporal dynamics of colored dissolved organic matter (CDOM) and spectral slope (S), and further to analyze its sources in three productive water supplies (Eagle Creek, Geist and Morse reservoirs) from Indiana, USA. The re- sults showed that he absorption coefficient aCDOM(440) ranged from 0.37 m-1 to 3.93 m-1 with an average of 1.89 ± 0.76 m-1 (±SD) for the aggregated dataset, and S varied from 0.0048 nm -1 to 0.0239 nm-1 with an average of 0.0108 ±0.0040 nmI. A significant relation- ship between S and aCDOM(440) can be fitted with a power equation (S = 0.013 × aCDOM(440)-0.42, R2 = 0.612), excluding data from Geist Reservoir during high flow (12 April 2010) and the Morse Reservoir on 25 June 2010 due to a T-storm achieves even higher determina- tion coefficient (R2 = 0.842). Correlation analysis indicated that aCDOM(440) has strong association with inorganic suspended matter (ISM) concentration (0.231 〈 R2 〈 0.786) for each of the field surveys, and this trend followed the aggregated datasets (R2 = 0.447, p 〈 0.001). In contrast, chlorophyll-a was only correlated with aCDOM(440) in summer and autumn (0.081 〈 R2 〈 0.763), indicating that CDOM is mainly from terrigenous sources in early spring and that phytoplankton contributed during the algal blooming season. The S value was used to characterize CDOM origin. The results indicate that the CDOM source is mainly controlled by hydrological varia- tions, while phytoplankton originated organic matter also closely linked with CDOM dynamics in three productive reservoirs.展开更多
Denitrification is an important process of nitrogen removal in lake ecosystems.However,the importance of denitrification across the entire soil-depth gradients including subsurface layers remains poorly understood.Thi...Denitrification is an important process of nitrogen removal in lake ecosystems.However,the importance of denitrification across the entire soil-depth gradients including subsurface layers remains poorly understood.This study aims to determine the spatial pattern of soil denitrification enzyme activity(DEA) and its environmental determinants across the entire soil depth gradients in the raised fields in Baiyang Lake,North China.In two different zones of the raised fields(i.e.,water boundary vs.main body of the raised fields),the soil samples from 1.0 m to 1.1 m depth were collected,and the DEA and following environmental determinants were quantified:soil moisture,p H,total nitrogen(TN),ammonia nitrogen(NH4+-N),nitrate nitrogen(NO3–-N),total organic carbon(TOC),and rhizome biomass of Phragmites australis.The results showed that the soil DEA and environmental factors had a striking zonal distribution across the entire soil depth gradients.The soil DEA reached two peak values in the upper and middle soil layers,indicating that denitrification are important in both topsoil and subsurface of the raised fields.The correlation analysis showed that the DEA is negatively correlated with the soil depth(p < 0.05).However,this phenomenon did not occur in the distance to the water edge,except in the upper layers(from 0.2 m to 0.7 m) of the boundary zone of the raised fields.In the main body of the raised fields,the DEA level remained high;however,it showed no significant relationship with the distance to the water edge.The linear regression analysis showed significant positive correlation of the DEA with the soil TN,NO3–-N,NH4+-N,and TOC;whereas it showed negative correlation with soil p H.No significant correlations with soil moisture and temperature were observed.A positive correlation was also found between the DEA and rhizome biomass of P.australis.展开更多
A comprehensive evaluation is made in this article On the ec-benefit, social benefit, and economic benefit form banana planting of a company in three planting bases in Xinping County. Before the banana is planted, the...A comprehensive evaluation is made in this article On the ec-benefit, social benefit, and economic benefit form banana planting of a company in three planting bases in Xinping County. Before the banana is planted, the land is classified into Sloppy land, woodland and amble land We earefidly study the three types of land, analyze the various effects and benefits made by banana planting on these types of land, and make a eomprehensive, comment.展开更多
Differences in transpiration and leaf water potential (LWP) in relation to cassava yield were investigated along inland valley toposequence in a 4×4 Latin square design. The landrace with the highest transpirat...Differences in transpiration and leaf water potential (LWP) in relation to cassava yield were investigated along inland valley toposequence in a 4×4 Latin square design. The landrace with the highest transpiration rate and lowest LWP yielded the lowest, while TMS 91/02324 and TMS 91/02327 with intermediate rate and highest LWP yielded the highest, indicating that high transpiration rate associated with low LWP reduced yield. Transpiration was lower in the fringe with deeper water table than valley bottom at deep water table site, while at shallow water table, it was higher in the fringe than valley bottom, suggesting that drought and excess moisture reduced transpiration. LWP and water table depth correlated negatively indicating that shallow water table reduced transpiration by reducing LWP. Transpiration increased and LWP decreased as radiation, leaf temperature and vapour pressure deficit increased and differences in these microclimatic conditions caused differences in the two processes between sites, years and time of day. Under mild water stress, transpiration and LWP were higher in the afternoon than the morning, but the reverse occurred under severe stress. TMS 91/02324 and TMS 91/02327 had the highest LWP under severe stress, indicating their higher drought tolerance than the other cultivars.展开更多
The present paper is the first study conducted in Romania on the inventory of wetlands of a large surface of the country. The focus of this study is the Moldavian Plateau, located in the east of Romania. It is delimit...The present paper is the first study conducted in Romania on the inventory of wetlands of a large surface of the country. The focus of this study is the Moldavian Plateau, located in the east of Romania. It is delimitated by the Eastern Carpathians on the west, the Romanian Plain on the south, the Ukrainian border on the north and the Prut Valley (border with the Republic of Moldavia) on the east. Although the Moldavian Plateau is situated in the driest region of Romania, the majority of the wetlands and of the low discharge rivers is found in this region. The existence of numerous wetlands, respectively small ponds, is influenced by the human activities and the scarcity of water resources. The impermeable clayey substratum favored the occurrence and survival of a large number of wetlands. Most of them are found in the northern Moldavian Plain, and the fewest to the south, in the Covurlui Plateau. The most important wetlands are those developed along the two main rivers draining this territory: Prut and Siret. Unfortunately, Siret River floodplain has been in most of its part protected by means of flood prevention dikes. Consequently, many of the wetlands entered agricultural use.展开更多
With the ability of representing the association and inner-feedback between plant morphological structure and physiological functions, functional-structural plant modeling (FSPM) approach has been used in many works...With the ability of representing the association and inner-feedback between plant morphological structure and physiological functions, functional-structural plant modeling (FSPM) approach has been used in many works, trying to better understand the mechanisms of integrating plant functions and its structure, and their communication with environmental factors. To do so, an FSPM of rice seedling was developed in this study, including structural morphogenetic model, photosynthetic model and biomass partitioning module. It can thus describe the developmental course of the rice structure dynamically based on the processes of biomass producing and partitioning. Furthermore, the processes of nitrogen metabolism, which influence the N content and growth dynamics of the virtual rice, were also considered. The model was developed with L-system on a platform established with Java programming language, which took over the parsing and visualization of the L-system strings to 3D objects using Java 3D extended library. The physiological processes in the model can be modified and further improved to gradually meet the needs for modeling the whole life cycle of rice, e.g., considering the respiration, and interaction with other environmental factors like CO2, temperature, etc.. The model was developed to provide a platform to systematically study and understand how plant systems like rice seedling work. The model and the virtualization platform can be expanded to provide decision support on N fertilizer application for the rice seedling and the other crops.展开更多
In this paper, we adopted simulation method to discuss influences of litter layer on plants habitat in grassland. Results indicated that ground surface evaporation, soil moisture, surface temperature, soil pH, soil bu...In this paper, we adopted simulation method to discuss influences of litter layer on plants habitat in grassland. Results indicated that ground surface evaporation, soil moisture, surface temperature, soil pH, soil bulk density and soil porosity were all strongly related to the litter quantity. Potassium (K) and organic materials in the soil covered by litter layer were higher than those in the soil uncovered by litter layer. With 100 g.ln-z increase of litter, the percentage of organic materials increased by 17.9%, nitrogen (N) increased by 7.6%, phosphor (P) increased by 26.4%, and K increased by 3.8%. With the litter accumulation amounting up to 600 g-m-2, the percentage of organic materials increased by 1.8 times, N increased by 81.5%, P increased by 1.8 times and K increased by 26.4%. According to the expected coefficient method of optimization, a mathematical model was established about the optimal accumulation quantity of litter.展开更多
The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the qu...The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the quake-hit areas,and the channel-fill deposit problem caused by the debris flow was the most destructive.Moreover,it is of high possibility that an even severe deposit problem would reappear and result in worse consequences.In order to maximize risk reduction of this problem,relevant departments of the government established a series of emergency river restoration schemes,for which the numerical analysis is an important procedure to evaluate and determine the optimized one.This study presents a numerical analysis by applying a twodimensional debris flow model combined with a relevant water-sediment model to simulate the deposit during the progress of the debris flow,and to calculate and analyze the river flow field under both the present condition and different restoration conditions.The results show that the debris flow model,which takes the confluence of the Wenjia Gully to the main river into account,could simulate the deposit process quite well.In the reproduced debris flow from the simulation of the '8.13' Debris Flow,the original river flow path has switched to a relatively lower place just along the right bank with a high speed of near 7m.s-1 after being blocked by the deposit,which is highly hazardous.To prevent this hazard,a recommended scheme is derived through inter-comparison of different restoration conditions.It shows that the recommended scheme is able to reduce the water level and as well to regulate the flow path.Based on the given conditions of the mainstream and the tributary confluence for the simulated '8.13' Debris Flow,when encountering a debris flow with deposit volume less than 0.5 million m3,the river channel can endure a 20-year return flood;however,when the deposit volume increases to 2 million m3,the flood capacity of the river will be greatly impacted and the scheme becomes invalid.The recommended scheme supported by the present study has been applied to the emergency river restoration after this mega-debris flow.展开更多
Albania has a lot of water re,;ources including: seas, rivers, lakes, lagoons as well as underground waters. Albania has about 485 mm precipitation annual year, with the forms of rain and snow. Most precipitations de...Albania has a lot of water re,;ources including: seas, rivers, lakes, lagoons as well as underground waters. Albania has about 485 mm precipitation annual year, with the forms of rain and snow. Most precipitations descend from the rivers and flow into the Adriatic Sea. About 23% of underground waters are distributed in all country and used by people for different activities. There are also a lot of kinds of natural habitats and ecosystems, such as: Mediterranean shrubs, broadleaves forests, conifer forests, mixed forests, alpine and sub-alpine pasture ecosystems, meadows, rock area, marine ecosystems, coastal, lagoons and other wetland areas, lakes, rivers, but of course and agricultural area. All of them have good correlations between the vegetation and water resources. This correlation is more evident near the rivers, lakes, lagoons etc..展开更多
文摘Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hygrophytes. We surveyed the composition, delta(13)C values and proline concentration of PFGs in eight different plant communities along a soil moisture gradient. Results show that: (1) PFGs occurred variously in eight steppe communities with different soil moisture status. In wetter habitats, hygromesophytes and hygrophytes were more abundant and accounted for the majority of aboveground biomass, whereas xerophytes and mesoxerophytes became more conspicuous in dryer habitats; (2) the numerical order of the mean delta(13)C values of PFGs is as follows: xerophytes (-26.38parts per thousand) = mesoxerophytes (-26.51parts per thousand) > xeromesophytes (-27.02parts per thousand) > mesophytes (-27.56parts per thousand) = hygromesophytes and hygrophytes (-27.80parts per thousand); (3) xerophytes maintained relative higher delta(13)C values and water use efficiency (WUE) in habitats of different water availability, whereas delta(13)C values of xeromesophytes were more sensitive to change in soil water availability; (4) From xerophytes to hygrophytes, their proline content markedly increased. Significantly positive correlations existed between proline and biomass or delta(13)C values of different water ecological groups.
文摘Whole_growing season pot experiments were conducted to examine the response of growth and water use efficiency ( WUE ) of spring wheat ( Triticum aestivum L. cv. Gaoyuan 602) to CO 2 enrichment. Wheat plants were grown in open_top chambers (OTCs) subject to two concentrations of CO 2 ()(350 and 700 μL/L, hereafter 'ambient' and 'elevated' respectively) and three soil water levels (80%, 60% and 40% field water capacity ( FWC ), hereafter 'high soil moisture', 'medium soil moisture' and 'low soil moisture' respectively). Elevated CO 2 greatly increased leaf net photosynthesis ( Pn ) at all three soil water levels. The Pn of plants growing under elevated was 22% lower than that of plants growing at ambient when measured with the same (700 μL/L). Plant growth was enhanced by elevated throughout the growing season, with an increase of 14.8% in shoot dry weight at harvest under high soil moisture, and leaf area was increased by about 20% at all three soil water levels. Elevated in combination with high soil moisture increased the ratio of plant shoot dry weight to height by 15.7%, while this ratio was decreased by over 50% when plants were subject to drought. Elevated also increased the water use efficiency of wheat, mainly due to decreases in transpiration and cumulative consumption of water, and an increase in shoot dry weight, with the biggest value of 30% occurring at high soil water moisture level. Compared to high soil moisture, drought decreased shoot dry weight by 72% under ambient , and by 76% under elevated . Similarly, drought also reduced WUE by 19% under ambient , and 23% under elevated . Our results indicate that: (1) elevated can increase the photosynthetic rates, growth and WUE of wheat plants; (2) long_term exposure to high may result in lower photosynthetic capacity; (3) high stimulates plants lateral growth more than vertical growth; (4) the effects of CO 2 enrichment on plants depend on soil water status, with plants benefiting more from CO 2 enrichment if sufficient water is supplied; and (5) drought may cause relatively more reduction in plant growth and WUE under future elevated conditions.
基金Supported by Project of National Science Foundation(41001321)Initial Funding of Doctor of Shenyang Normal University(2009102)~~
文摘The concept,merits and domestic project examples of ecological disposal technique of dispersal sewage were introduced in detail.It was pointed out that the ecological disposal of dispersal sewage was investment-saved,energy consumption-reduced and ecological balance-protected advanced technology.This technology was suitable for small community,dispersal units and agencies,villages and other regions without pipe network pervaded and an available approach for solving present environment-protection problems and keeping sustainable development in China.
基金national key basic develop-ment of China (G1999043407), grant from the National Natural Science Foundation of China (No. 30271068) and KZ-CX-SW-01-01B of the Chinese Academy of Sciences.
文摘Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fisch.ex Turcz) from the broadleaved/Korean pine forest in Changbai Mountain. Leaf growth, water transpiration and photosynthesis were compared for each species under three soil moisture conditions: 85%-100% (high water, CK), 65%-85% (Medium water, MW) and 45%-65% (low water, LW) of 37.4% water-holding capacity in field. The results showed that the characteristic of typical drought-resistance of the leaves is significantly developed. The net photosynthetic rate and water use efficiency of Fraxinus mandshurica were higher in MW than those in CK. But for the other four species, the net photosynthetic rate and water use efficiency in CK were lower than those in MW and LW. The transpiration rate responding to soil moistures varied from species to species.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest,China(GYHY201106029)~~
文摘[Objective] This study aimed to explore the characteristics of ecological water requirement in Maijishan Scenic Spot. [Methed] The characteristics of ecologi- cal water requirement in Maijishan Scenic Spot were analyzed based on,the data of soil humidity and meteorology of the spot. [Result] The result showed that the actual annual ecological water requirement in the spot was 678×10^6 m^3, and the proportion of soil water and evapotranspiration were 21% and 79%, respectively; the minimum annual ecological water requirement quota in the spot was 480.27×10^6 m^3, and the proportion of soil water and evapotranspiration were 16% and 84%, respectively; the minimum annual suitable ecological water requirement quota in the spot was 624.22×10^6 m^3, and the proportion of soil water and evapotranspiration were 18% and 82%, respectively. The precipitation was 614×10^6 m^3, and consumptive water surplus reached up to 78×10^6 m^3. The years when the precipitation was higher than the evapotranspiration accounted for 76%. Since 1980s, the evapotranspiration showed a linearly increasing trend. The precipitation was higher than the evapotranspiration from Jun. to Oct. and less than the evapotranspiration from Nov. to Dec. and Jan. to May. Evapotranspiration water requirement was regulated by soil water. The dis- parity between precipitation and evapotranspiration was huge in spring, thus having certain influence on waterfalls and streams in the spot. [Conclusion] The results of this study provided a basis for the rational use and long-term planning of the water sources in Maijishan Scenic Spot.
文摘The ecological protection of the watersheds in China is being confronted with a lot of problems such as soil and water erosion, water pollution at present. Therefore watershed eco-compensation is becoming a question of common interest. Based on the analyses of the major problems and their origins in the watershed protection in China, the paper discusses the concerned policies including relative rules and laws, financial policies and water right transaction policies. Simultaneously the paper reviews the practices carried out in China, including the ecological construction project in the western China, the trans-provincial eco-compensation practice and the small watershed eco-compensation practice. According to the present situation of eco-compensation practices and the future policy requirement, this paper finally puts forward four key problems to be solved in the watershed eco-compensation of China in the future.
基金supported by the Soil Science department, faculty of Soil & Water, University College of Agriculture & Natural Resources, University of Tehran
文摘The fact of, present is the key of the past, will help us to use paleosols properties as indicators of the ecological characteristics of past .time, particularly the paleoclimate. In this respect the micro- morphological properties showed to be a very good indicator. Therefore, for investigating of climate change in Ardakan-Yazd plain, Central Iran 9 pedons were digged and described. Yazd has an arid climate with less than 100 mm annual precipitation and more than 22℃ mean annual temperature (Aridic-hyper thermic soil moisture and temperature regions, respectively). Based on the morphological and physicochemical analysis Arglic, Calcic and Gypsic diagnostic horizons have been distinguished in these soils. Thin section studied showed that the illuviated form of clay includes, infillings on channel, coating on pendant, on nodules and on grains, at lower depths and also juxtaposed calcite needles on void argillan at upper part of the profiles. Mineralogical result showed fine clay in arglic horizon, too. Considering depth and forms of these pedofeatures, we concluded that, the observed illuviated clays at lower depth must be the result of the more humid climate of the past, where the carbonates have been removed completely as pendant, nodules or coating to considerable depth, following processes, clay has been dispersed and also trans located to these depths. In contrast to these features, the juxtaposed needle calcite at the shallower depth is probably the result of drier climate of today.
基金Supported by the Knowledge Innovation Program of CAS (KZCX1-SW-12), and NSFC (No. 30200032, 40203007)
文摘The mainstreams of lake optics research in recent decades include optical properties of lakewater, observation, transmission and calculation of underwater radiation, determination of absorption coefficient S of yellow substance, influence of UV-B radiation of lake primary productivity by bio-optical model. Major lake optics applications, such as calculation of lake primary productivity and chl-a, analysis of factors restricting eu- trophication, and protection against lake eutrophication are summarized.
文摘Based on the theories of landscape ecology, landscape eco environment in the control watershed by reservoir of Erlong Mountain in Heilongjiang Province was analyzed and assessed by using GIS technique and statistical model of Principal Component Analysis and Spatial Cluster Analysis. It is found that 100.08km2(36%)of the total area is in the state of kilter,85.73km2(31%)of the total area is in the state of general,and 47.26km2(17%)and 15.48km2(16%)is in the relatively poor state and ideal state. According to landscape ecological structure,there are three landscape function areas being planned and designed. 1) Agricultural landscape function area: its developmental direction is tour agriculture and high benefit agriculture. 2) Eco environment protected function area:the direction of development and utilization of this region is to develop vigorously forest for soil and water conservation, and try to increase the rate of vegetation cover. 3) Forest landscape function area: rational cut and utilization of forest resources, space optimization disposal of category of forest, foster of forest and protection of wildwood will become the main development directions for this region. This study trys to provide scientific foundation for ecological restoration of the whole valley and its sustainable development.
基金Under the auspices of National Natural Science Foundation of China(No.71203200,41671455)National Science and Technology Platform Construction Project(No.2005DKA32300)Major Research Projects of the Ministry of Education(No.16JJD770019)
文摘Implementation of payments for watershed services(PWS) has been regarded as a promising approach to coordinating the interests of upstream and downstream ecosystem services stakeholders. There is growing concern about whether PWS programs have achieved their original environmental goals of improving water quality and quantity, as well as the ancillary objective of increasing the welfare of local people. We start with an overview of PWS schemes and focus on their particularity and implementation mechanisms in China. We proceed to review 62 active PWS cases and examine their environmental performance in detail. The resulting findings show that PWS schemes have been able to reduce water pollution to some extent by establishing collaborative upstream/downstream watershed management policies, thereby improving water quality and quantity, as well as by making government officials more responsible for water resource management. In addition, their continued effectiveness in light of present challenges such as water-quality data availability is discussed. Chinese PWS schemes and their implementation mechanisms also provide information useful in monitoring environmental outcomes and guiding future designs of PWS programs in other regions.
基金Under the auspices of National Aeronautics and Space Administration of US(NASA)(No.NNG06GA92G)National Natural Science Foundation of China(No.41171293)
文摘This study examined the spatiotemporal dynamics of colored dissolved organic matter (CDOM) and spectral slope (S), and further to analyze its sources in three productive water supplies (Eagle Creek, Geist and Morse reservoirs) from Indiana, USA. The re- sults showed that he absorption coefficient aCDOM(440) ranged from 0.37 m-1 to 3.93 m-1 with an average of 1.89 ± 0.76 m-1 (±SD) for the aggregated dataset, and S varied from 0.0048 nm -1 to 0.0239 nm-1 with an average of 0.0108 ±0.0040 nmI. A significant relation- ship between S and aCDOM(440) can be fitted with a power equation (S = 0.013 × aCDOM(440)-0.42, R2 = 0.612), excluding data from Geist Reservoir during high flow (12 April 2010) and the Morse Reservoir on 25 June 2010 due to a T-storm achieves even higher determina- tion coefficient (R2 = 0.842). Correlation analysis indicated that aCDOM(440) has strong association with inorganic suspended matter (ISM) concentration (0.231 〈 R2 〈 0.786) for each of the field surveys, and this trend followed the aggregated datasets (R2 = 0.447, p 〈 0.001). In contrast, chlorophyll-a was only correlated with aCDOM(440) in summer and autumn (0.081 〈 R2 〈 0.763), indicating that CDOM is mainly from terrigenous sources in early spring and that phytoplankton contributed during the algal blooming season. The S value was used to characterize CDOM origin. The results indicate that the CDOM source is mainly controlled by hydrological varia- tions, while phytoplankton originated organic matter also closely linked with CDOM dynamics in three productive reservoirs.
基金Under the auspices of National Science Fund for Distinguished Young Scholars(No.51125035)National Science Foundation for Innovative Research Group(No.51121003)Major Science and Technology Program for Water Pollution Control and Treatment(No.2009ZX07209-008)
文摘Denitrification is an important process of nitrogen removal in lake ecosystems.However,the importance of denitrification across the entire soil-depth gradients including subsurface layers remains poorly understood.This study aims to determine the spatial pattern of soil denitrification enzyme activity(DEA) and its environmental determinants across the entire soil depth gradients in the raised fields in Baiyang Lake,North China.In two different zones of the raised fields(i.e.,water boundary vs.main body of the raised fields),the soil samples from 1.0 m to 1.1 m depth were collected,and the DEA and following environmental determinants were quantified:soil moisture,p H,total nitrogen(TN),ammonia nitrogen(NH4+-N),nitrate nitrogen(NO3–-N),total organic carbon(TOC),and rhizome biomass of Phragmites australis.The results showed that the soil DEA and environmental factors had a striking zonal distribution across the entire soil depth gradients.The soil DEA reached two peak values in the upper and middle soil layers,indicating that denitrification are important in both topsoil and subsurface of the raised fields.The correlation analysis showed that the DEA is negatively correlated with the soil depth(p < 0.05).However,this phenomenon did not occur in the distance to the water edge,except in the upper layers(from 0.2 m to 0.7 m) of the boundary zone of the raised fields.In the main body of the raised fields,the DEA level remained high;however,it showed no significant relationship with the distance to the water edge.The linear regression analysis showed significant positive correlation of the DEA with the soil TN,NO3–-N,NH4+-N,and TOC;whereas it showed negative correlation with soil p H.No significant correlations with soil moisture and temperature were observed.A positive correlation was also found between the DEA and rhizome biomass of P.australis.
文摘A comprehensive evaluation is made in this article On the ec-benefit, social benefit, and economic benefit form banana planting of a company in three planting bases in Xinping County. Before the banana is planted, the land is classified into Sloppy land, woodland and amble land We earefidly study the three types of land, analyze the various effects and benefits made by banana planting on these types of land, and make a eomprehensive, comment.
文摘Differences in transpiration and leaf water potential (LWP) in relation to cassava yield were investigated along inland valley toposequence in a 4×4 Latin square design. The landrace with the highest transpiration rate and lowest LWP yielded the lowest, while TMS 91/02324 and TMS 91/02327 with intermediate rate and highest LWP yielded the highest, indicating that high transpiration rate associated with low LWP reduced yield. Transpiration was lower in the fringe with deeper water table than valley bottom at deep water table site, while at shallow water table, it was higher in the fringe than valley bottom, suggesting that drought and excess moisture reduced transpiration. LWP and water table depth correlated negatively indicating that shallow water table reduced transpiration by reducing LWP. Transpiration increased and LWP decreased as radiation, leaf temperature and vapour pressure deficit increased and differences in these microclimatic conditions caused differences in the two processes between sites, years and time of day. Under mild water stress, transpiration and LWP were higher in the afternoon than the morning, but the reverse occurred under severe stress. TMS 91/02324 and TMS 91/02327 had the highest LWP under severe stress, indicating their higher drought tolerance than the other cultivars.
文摘The present paper is the first study conducted in Romania on the inventory of wetlands of a large surface of the country. The focus of this study is the Moldavian Plateau, located in the east of Romania. It is delimitated by the Eastern Carpathians on the west, the Romanian Plain on the south, the Ukrainian border on the north and the Prut Valley (border with the Republic of Moldavia) on the east. Although the Moldavian Plateau is situated in the driest region of Romania, the majority of the wetlands and of the low discharge rivers is found in this region. The existence of numerous wetlands, respectively small ponds, is influenced by the human activities and the scarcity of water resources. The impermeable clayey substratum favored the occurrence and survival of a large number of wetlands. Most of them are found in the northern Moldavian Plain, and the fewest to the south, in the Covurlui Plateau. The most important wetlands are those developed along the two main rivers draining this territory: Prut and Siret. Unfortunately, Siret River floodplain has been in most of its part protected by means of flood prevention dikes. Consequently, many of the wetlands entered agricultural use.
文摘With the ability of representing the association and inner-feedback between plant morphological structure and physiological functions, functional-structural plant modeling (FSPM) approach has been used in many works, trying to better understand the mechanisms of integrating plant functions and its structure, and their communication with environmental factors. To do so, an FSPM of rice seedling was developed in this study, including structural morphogenetic model, photosynthetic model and biomass partitioning module. It can thus describe the developmental course of the rice structure dynamically based on the processes of biomass producing and partitioning. Furthermore, the processes of nitrogen metabolism, which influence the N content and growth dynamics of the virtual rice, were also considered. The model was developed with L-system on a platform established with Java programming language, which took over the parsing and visualization of the L-system strings to 3D objects using Java 3D extended library. The physiological processes in the model can be modified and further improved to gradually meet the needs for modeling the whole life cycle of rice, e.g., considering the respiration, and interaction with other environmental factors like CO2, temperature, etc.. The model was developed to provide a platform to systematically study and understand how plant systems like rice seedling work. The model and the virtualization platform can be expanded to provide decision support on N fertilizer application for the rice seedling and the other crops.
基金Acknowledgements: This research work was supported by the National Natural Science Foundation of China (No. 30590382 and No. 30570273) and Science Foundation for Young Teachers of Northeast Normal University (No. 20070502).
文摘In this paper, we adopted simulation method to discuss influences of litter layer on plants habitat in grassland. Results indicated that ground surface evaporation, soil moisture, surface temperature, soil pH, soil bulk density and soil porosity were all strongly related to the litter quantity. Potassium (K) and organic materials in the soil covered by litter layer were higher than those in the soil uncovered by litter layer. With 100 g.ln-z increase of litter, the percentage of organic materials increased by 17.9%, nitrogen (N) increased by 7.6%, phosphor (P) increased by 26.4%, and K increased by 3.8%. With the litter accumulation amounting up to 600 g-m-2, the percentage of organic materials increased by 1.8 times, N increased by 81.5%, P increased by 1.8 times and K increased by 26.4%. According to the expected coefficient method of optimization, a mathematical model was established about the optimal accumulation quantity of litter.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2011CB409903)the National Natural Science Foundation of China (Grant No. 50739002)
文摘The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the quake-hit areas,and the channel-fill deposit problem caused by the debris flow was the most destructive.Moreover,it is of high possibility that an even severe deposit problem would reappear and result in worse consequences.In order to maximize risk reduction of this problem,relevant departments of the government established a series of emergency river restoration schemes,for which the numerical analysis is an important procedure to evaluate and determine the optimized one.This study presents a numerical analysis by applying a twodimensional debris flow model combined with a relevant water-sediment model to simulate the deposit during the progress of the debris flow,and to calculate and analyze the river flow field under both the present condition and different restoration conditions.The results show that the debris flow model,which takes the confluence of the Wenjia Gully to the main river into account,could simulate the deposit process quite well.In the reproduced debris flow from the simulation of the '8.13' Debris Flow,the original river flow path has switched to a relatively lower place just along the right bank with a high speed of near 7m.s-1 after being blocked by the deposit,which is highly hazardous.To prevent this hazard,a recommended scheme is derived through inter-comparison of different restoration conditions.It shows that the recommended scheme is able to reduce the water level and as well to regulate the flow path.Based on the given conditions of the mainstream and the tributary confluence for the simulated '8.13' Debris Flow,when encountering a debris flow with deposit volume less than 0.5 million m3,the river channel can endure a 20-year return flood;however,when the deposit volume increases to 2 million m3,the flood capacity of the river will be greatly impacted and the scheme becomes invalid.The recommended scheme supported by the present study has been applied to the emergency river restoration after this mega-debris flow.
文摘Albania has a lot of water re,;ources including: seas, rivers, lakes, lagoons as well as underground waters. Albania has about 485 mm precipitation annual year, with the forms of rain and snow. Most precipitations descend from the rivers and flow into the Adriatic Sea. About 23% of underground waters are distributed in all country and used by people for different activities. There are also a lot of kinds of natural habitats and ecosystems, such as: Mediterranean shrubs, broadleaves forests, conifer forests, mixed forests, alpine and sub-alpine pasture ecosystems, meadows, rock area, marine ecosystems, coastal, lagoons and other wetland areas, lakes, rivers, but of course and agricultural area. All of them have good correlations between the vegetation and water resources. This correlation is more evident near the rivers, lakes, lagoons etc..