The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem A...The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem Assessment ( MA), this paper develops an indicator system and conducts a spatial cluster analysis at the 1km by I km grid pixel scale with the SOM neural network algorithm to sort the core ecosystem services over the vertical and horizontal dimensions. A case study was carried out in Xilingol League. The ecosystem services in Xilingol League could be divided to six different ecological zones. The SOM neural network algorithm was capable of identifying the similarities among the input data automatically. The research provides both spatially and temporally valuable information targeted sustainable ecosystem management for decision-makers.展开更多
The development of modern agriculture has resulted in much homogenization of the landscape consisting of large patches of farmland,so small remnant non-crop habitats especially linear corridors play an important role ...The development of modern agriculture has resulted in much homogenization of the landscape consisting of large patches of farmland,so small remnant non-crop habitats especially linear corridors play an important role in the conservation of species and the maintenance of ecosystem functions.However,little attention has been paid to the effects of corridors structural characteristics on the plant species restricted to such habitats.In this study,we selected three types of corridors including ditch,hedgerow and road,and analyzed their structural characteristics.The plant species presented in these corridors were investigated,and the species diversity,abundance and frequency were estimated.Moreover,spatial arrangements of corridors were classified into different types to discuss whether there were significant effects of corridor network on plant distribution.The results show that three types of corridors have different effects on plant species composition and diversity.The one-one combined corridor networks and total network associated by three corridors have more complex structural features than each single type of corridor.However,there is no strong correlation between the corridor networks with their plant species.We suggest that carrying out a pointed vegetation survey at corridor intersections to further test the relationships between structural features of corridor and plants is necessary.展开更多
基金Supported by the National Scientific Foundation of China(4080123170873118)+6 种基金the Chinese Academy of Sciences(KZCX2-YW-305-2KSCX2-YW-N-039KZCX2-YW-326-1)the Ministry of Science and Technology of China(2006DFB91912012006BAC08B032006BAC08B062008BAK47B02)~~
文摘The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem Assessment ( MA), this paper develops an indicator system and conducts a spatial cluster analysis at the 1km by I km grid pixel scale with the SOM neural network algorithm to sort the core ecosystem services over the vertical and horizontal dimensions. A case study was carried out in Xilingol League. The ecosystem services in Xilingol League could be divided to six different ecological zones. The SOM neural network algorithm was capable of identifying the similarities among the input data automatically. The research provides both spatially and temporally valuable information targeted sustainable ecosystem management for decision-makers.
基金Under the auspices of National Natural Science Foundation of China(No.41071118)
文摘The development of modern agriculture has resulted in much homogenization of the landscape consisting of large patches of farmland,so small remnant non-crop habitats especially linear corridors play an important role in the conservation of species and the maintenance of ecosystem functions.However,little attention has been paid to the effects of corridors structural characteristics on the plant species restricted to such habitats.In this study,we selected three types of corridors including ditch,hedgerow and road,and analyzed their structural characteristics.The plant species presented in these corridors were investigated,and the species diversity,abundance and frequency were estimated.Moreover,spatial arrangements of corridors were classified into different types to discuss whether there were significant effects of corridor network on plant distribution.The results show that three types of corridors have different effects on plant species composition and diversity.The one-one combined corridor networks and total network associated by three corridors have more complex structural features than each single type of corridor.However,there is no strong correlation between the corridor networks with their plant species.We suggest that carrying out a pointed vegetation survey at corridor intersections to further test the relationships between structural features of corridor and plants is necessary.