We start with a description of the statistical inferential framework and the duality between observed data and the true state of nature that underlies it. We demonstrate here that the usual testing of dueling hypothes...We start with a description of the statistical inferential framework and the duality between observed data and the true state of nature that underlies it. We demonstrate here that the usual testing of dueling hypotheses and the acceptance of one and the rejection of the other is a framework which can often be faulty when such inferences are applied to individual subjects. This follows from noting that the statistical inferential framework is predominantly based on conclusions drawn for aggregates and noting that what is true in the aggregate frequently does not hold for individuals, an ecological fallacy. Such a fallacy is usually seen as problematic when each data record represents aggregate statistics for counties or districts and not data for individuals. Here we demonstrate strong ecological fallacies even when using subject data. Inverted simulations, of trials rightly sized to detect meaningful differences, yielding a statistically significant p-value of 0.000001 (1 in a million) and associated with clinically meaningful differences between a hypothetical new therapy and a standard therapy, had a proportion of instances of subjects with standard therapy effect better than new therapy effects close to 30%. A ―winner take all‖ choice between two hypotheses may not be supported by statistically significant differences based on stochastic data. We also argue the incorrectness across many individuals of other summaries such as correlations, density estimates, standard deviations and predictions based on machine learning models. Despite artifacts we support the use of prospective clinical trials and careful unbiased model building as necessary first steps. In health care, high touch personalized care based on patient level data will remain relevant even as we adopt more high tech data-intensive personalized therapeutic strategies based on aggregates.展开更多
文摘We start with a description of the statistical inferential framework and the duality between observed data and the true state of nature that underlies it. We demonstrate here that the usual testing of dueling hypotheses and the acceptance of one and the rejection of the other is a framework which can often be faulty when such inferences are applied to individual subjects. This follows from noting that the statistical inferential framework is predominantly based on conclusions drawn for aggregates and noting that what is true in the aggregate frequently does not hold for individuals, an ecological fallacy. Such a fallacy is usually seen as problematic when each data record represents aggregate statistics for counties or districts and not data for individuals. Here we demonstrate strong ecological fallacies even when using subject data. Inverted simulations, of trials rightly sized to detect meaningful differences, yielding a statistically significant p-value of 0.000001 (1 in a million) and associated with clinically meaningful differences between a hypothetical new therapy and a standard therapy, had a proportion of instances of subjects with standard therapy effect better than new therapy effects close to 30%. A ―winner take all‖ choice between two hypotheses may not be supported by statistically significant differences based on stochastic data. We also argue the incorrectness across many individuals of other summaries such as correlations, density estimates, standard deviations and predictions based on machine learning models. Despite artifacts we support the use of prospective clinical trials and careful unbiased model building as necessary first steps. In health care, high touch personalized care based on patient level data will remain relevant even as we adopt more high tech data-intensive personalized therapeutic strategies based on aggregates.