Speciation research has seen a renewed interest in ecological speciation, which emphasises divergent ecological se- lection leading to the evolution of reproductive isolation. Selection from divergent ecologies means ...Speciation research has seen a renewed interest in ecological speciation, which emphasises divergent ecological se- lection leading to the evolution of reproductive isolation. Selection from divergent ecologies means that phenotypic plasticity can play an important role in ecological speciation. Phenotypic plasticity involves the induction of phenotypes over the lifetime of an organism and emerging evidence suggests that epigenetic marks such as cytosine and protein (histone) modifications might regu- late such environmental induction. Epigenetic marks play a wide role in a variety of processes including development, sex dif- ferentiation and allocation, sexual conflict, regulation of transposable elements and phenotypic plasticity. Here we describe recent studies that investigate epigenetic mechanisms in a variety of contexts. There is mounting evidence for environmentally induced epigenetic variation and for the stable inheritance of epigenetic marks between generations. Thus, epigenetically-based pheno- typic plasticity may play a role in adaptation and ecological speciation. However, there is less evidence for the inheritance of in- duced epigenetic variation across multiple generations in animals. Currently few studies of ecological speciation incorporate the potential for the involvement of epigenetically-based induction of phenotypes, and we argue that this is an important omission [Current Zoology 59 (5): 686-696, 2013 ].展开更多
Bodies of plants are modularly organized. Development proceeds by adding new modules to open endings with a potential for branching. Each module is autonomous to some extent. Development relies on the self-organized p...Bodies of plants are modularly organized. Development proceeds by adding new modules to open endings with a potential for branching. Each module is autonomous to some extent. Development relies on the self-organized patterns that emerge from the interactions of individual modules. Interactions include both competition and cooperation,and several types of positive and negative feedback loops are involved. Development can be open to external influences, thus enabling the plant to adjust its form to the environment,for example, to the spatial distribution of ecological resources. This paper provides a review on adaptive plasticity in plants.展开更多
文摘Speciation research has seen a renewed interest in ecological speciation, which emphasises divergent ecological se- lection leading to the evolution of reproductive isolation. Selection from divergent ecologies means that phenotypic plasticity can play an important role in ecological speciation. Phenotypic plasticity involves the induction of phenotypes over the lifetime of an organism and emerging evidence suggests that epigenetic marks such as cytosine and protein (histone) modifications might regu- late such environmental induction. Epigenetic marks play a wide role in a variety of processes including development, sex dif- ferentiation and allocation, sexual conflict, regulation of transposable elements and phenotypic plasticity. Here we describe recent studies that investigate epigenetic mechanisms in a variety of contexts. There is mounting evidence for environmentally induced epigenetic variation and for the stable inheritance of epigenetic marks between generations. Thus, epigenetically-based pheno- typic plasticity may play a role in adaptation and ecological speciation. However, there is less evidence for the inheritance of in- duced epigenetic variation across multiple generations in animals. Currently few studies of ecological speciation incorporate the potential for the involvement of epigenetically-based induction of phenotypes, and we argue that this is an important omission [Current Zoology 59 (5): 686-696, 2013 ].
基金This research was subsidized by the Hungarian National Research Fund(OTKA T35009,and NWOOTKA N34028),the Hungarian Ministry of Education(FKFP 0187/1990,Istvn Szchenyi Scolarship),and the International Program of the Santa Fe Institute,NM,USA.
文摘Bodies of plants are modularly organized. Development proceeds by adding new modules to open endings with a potential for branching. Each module is autonomous to some extent. Development relies on the self-organized patterns that emerge from the interactions of individual modules. Interactions include both competition and cooperation,and several types of positive and negative feedback loops are involved. Development can be open to external influences, thus enabling the plant to adjust its form to the environment,for example, to the spatial distribution of ecological resources. This paper provides a review on adaptive plasticity in plants.