Urban green spaces have been arisen growing concern responded to the social and environmental costs of urban sprawl. A wide range of planning and policies has been and/or will be designed to protect urban green spaces...Urban green spaces have been arisen growing concern responded to the social and environmental costs of urban sprawl. A wide range of planning and policies has been and/or will be designed to protect urban green spaces and optimize their spatial pattern. A better design or planning of urban green space can make a major contribution to quality of environment and urban life, and furthermore can decide whether we can have a sustainable development in the urban area. Information about the status quo of urban green spaces can help planners design more effectively. However, how to quantify and capture such information will be the essential question we face. In this paper, to quantify the urban green space, a new method comprising gradient analysis, landscape metrics and GIS was developed through a case of Jinan City. The results demonstrate: 1) the gradient analysis is a valid and reliable instrument to quantify the urban green space spatial pattern precisely; 2) using moving window, explicit landscape metrics were spatially realized. Compared with quantifying metrics in the entire landscape, it would be better to link pattern with process and establish an important basis for analyzing the ecological and socioeconomic functions of green spaces.展开更多
The construction of China-Mongolia-Russia high-speed railways is a strategic move to promote transportation infrastructure inter-connectivity between these countries, which will accelerate the implementation of the Ch...The construction of China-Mongolia-Russia high-speed railways is a strategic move to promote transportation infrastructure inter-connectivity between these countries, which will accelerate the implementation of the China-Mongolia-Russia Economic Corridor. However, well-planned China-Mongolia-Russia high-speed railways demand accurately identifying construction risks, scientifically evaluating risk levels, and mapping the spatial distribution of these risks. Therefore, this study established the integrated risk evaluation model(IREM) to scientifically evaluate the economic, social, and ecological risks of China-Mongolia-Russia high-speed railway construction and determine their magnitude and spatial distribution pattern. Based on this analysis, we propose designs for the east and west China-Mongolia-Russia high-speed railways and policy suggestions to mitigate construction risks. Suggestions include developing innovative cooperation of the "high-speed railway for resources and market", strengthening communication and technology dissemination, and applying innovative engineering techniques and setting buffers; establishing collaborative prevention and control systems to mitigate the three major ecological risks in the China, Mongolia, and Russia trans-border areas; and promoting economic integration by improving strategic coordination. In summary, this study provides scientific support for designing the China-Mongolia-Russia high-speed railways minimizing construction risks.展开更多
文摘Urban green spaces have been arisen growing concern responded to the social and environmental costs of urban sprawl. A wide range of planning and policies has been and/or will be designed to protect urban green spaces and optimize their spatial pattern. A better design or planning of urban green space can make a major contribution to quality of environment and urban life, and furthermore can decide whether we can have a sustainable development in the urban area. Information about the status quo of urban green spaces can help planners design more effectively. However, how to quantify and capture such information will be the essential question we face. In this paper, to quantify the urban green space, a new method comprising gradient analysis, landscape metrics and GIS was developed through a case of Jinan City. The results demonstrate: 1) the gradient analysis is a valid and reliable instrument to quantify the urban green space spatial pattern precisely; 2) using moving window, explicit landscape metrics were spatially realized. Compared with quantifying metrics in the entire landscape, it would be better to link pattern with process and establish an important basis for analyzing the ecological and socioeconomic functions of green spaces.
基金Science and Technology Basic Resources Survey Project of China,No.2017FY101304Major R&D Project of Chinese Academy of Sciences,No.ZDRW-ZS-2016-6-5National Natural Science Foundation of China,No.41701639
文摘The construction of China-Mongolia-Russia high-speed railways is a strategic move to promote transportation infrastructure inter-connectivity between these countries, which will accelerate the implementation of the China-Mongolia-Russia Economic Corridor. However, well-planned China-Mongolia-Russia high-speed railways demand accurately identifying construction risks, scientifically evaluating risk levels, and mapping the spatial distribution of these risks. Therefore, this study established the integrated risk evaluation model(IREM) to scientifically evaluate the economic, social, and ecological risks of China-Mongolia-Russia high-speed railway construction and determine their magnitude and spatial distribution pattern. Based on this analysis, we propose designs for the east and west China-Mongolia-Russia high-speed railways and policy suggestions to mitigate construction risks. Suggestions include developing innovative cooperation of the "high-speed railway for resources and market", strengthening communication and technology dissemination, and applying innovative engineering techniques and setting buffers; establishing collaborative prevention and control systems to mitigate the three major ecological risks in the China, Mongolia, and Russia trans-border areas; and promoting economic integration by improving strategic coordination. In summary, this study provides scientific support for designing the China-Mongolia-Russia high-speed railways minimizing construction risks.