No matter from the perspective of slope protection, landscape effect and construction cost, or from the perspective of ecological benefit, the development of original ecological tridimensional vegetation has become th...No matter from the perspective of slope protection, landscape effect and construction cost, or from the perspective of ecological benefit, the development of original ecological tridimensional vegetation has become the inevitable trend for slope vegetation in pursuit of protecting ecological condition, decreasing soil erosion, maintaining ecological balance and beautifying environment of slope. The concept of original ecological tridimensional slope vegetation is proposed in this paper, and the original ecological tridimensional slope vegetation is studied through theoretical analysis and experiments. Specifically, the mechanical effect of slope vegetation in reinforcing the cohesion and shear strength of soil mass is firstly discussed, and then experiments are performed to study the water interception and containing function of slope under various vegetation conditions. Moreover, the relation between soil moisture and cohesion, the relation between root distribution density and cohesion, and the relation between root distribution density and soil shear strength are also studied based on experiments.Finally, based on field observation, the soil erosion states of slope under various vegetation conditions are comparatively studied. It is found that the original ecological tridimensional slope, which combines grass,shrub and tree, can generate comprehensive slope protection effects, and hence strengthen the slope protection ability and bring multiple slope protection benefits. Thereby, the theoretical foundation for developing original ecological tridimensional slope vegetation is established.展开更多
We built a classification tree (CT) model to estimate climatic factors controlling the cold temperate coniferous forest (CTCF) distributions in Yunnan province and to predict its potential habitats under the curre...We built a classification tree (CT) model to estimate climatic factors controlling the cold temperate coniferous forest (CTCF) distributions in Yunnan province and to predict its potential habitats under the current and future climates, using seven climate change scenarios, projected over the years of 2070-2099. The accurate CT model on CTCFs showed that minimum temperature of coldest month (TMW) was the overwhelmingly potent factor among the six climate variables. The areas of TMW〈-4.05 were suitable habitats of CTCF, and the areas of -1.35 〈 TMW were non-habitats, where temperate conifer and broad-leaved mixed forests (TCBLFs) were distribute in lower elevation, bordering on the CTCF. Dominant species of Abies, Picea, and Larix in the CTCFs, are more tolerant to winter coldness than Tsuga and broad-leaved trees including deciduous broad-leaved Acer and Betula, evergreen broad- leaved Cyclobalanopsis and Lithocarpus in TCBLFs. Winter coldness may actually limit the cool-side distributions of TCBLFs in the areas between -1.35℃ and -4.05℃, and the warm-side distributions of CTCFs may be controlled by competition to the species of TCBLFs. Under future climate scenarios, the vulnerable area, where current potential (suitable + marginal) habitats (80,749 km^2) shift to non-habitats, was predicted to decrease to 55.91% (45,053 km^2) of the current area. Inferring from the current vegetation distribution pattern, TCBLFs will replace declining CTCFs. Vulnerable areas predicted by models are important in determining priority of ecosystem conservation.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 41372307)the Yunan Provincial Communication Research Fund (Grant No. 2010 (A) 06-b)the Young Scholar Foundation of Central South University of Forestry and Technology (Grant No. 2008051B)
文摘No matter from the perspective of slope protection, landscape effect and construction cost, or from the perspective of ecological benefit, the development of original ecological tridimensional vegetation has become the inevitable trend for slope vegetation in pursuit of protecting ecological condition, decreasing soil erosion, maintaining ecological balance and beautifying environment of slope. The concept of original ecological tridimensional slope vegetation is proposed in this paper, and the original ecological tridimensional slope vegetation is studied through theoretical analysis and experiments. Specifically, the mechanical effect of slope vegetation in reinforcing the cohesion and shear strength of soil mass is firstly discussed, and then experiments are performed to study the water interception and containing function of slope under various vegetation conditions. Moreover, the relation between soil moisture and cohesion, the relation between root distribution density and cohesion, and the relation between root distribution density and soil shear strength are also studied based on experiments.Finally, based on field observation, the soil erosion states of slope under various vegetation conditions are comparatively studied. It is found that the original ecological tridimensional slope, which combines grass,shrub and tree, can generate comprehensive slope protection effects, and hence strengthen the slope protection ability and bring multiple slope protection benefits. Thereby, the theoretical foundation for developing original ecological tridimensional slope vegetation is established.
基金supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the EnvironmentJapan and JSPS KAKENHI Grant Numbers 15H02833
文摘We built a classification tree (CT) model to estimate climatic factors controlling the cold temperate coniferous forest (CTCF) distributions in Yunnan province and to predict its potential habitats under the current and future climates, using seven climate change scenarios, projected over the years of 2070-2099. The accurate CT model on CTCFs showed that minimum temperature of coldest month (TMW) was the overwhelmingly potent factor among the six climate variables. The areas of TMW〈-4.05 were suitable habitats of CTCF, and the areas of -1.35 〈 TMW were non-habitats, where temperate conifer and broad-leaved mixed forests (TCBLFs) were distribute in lower elevation, bordering on the CTCF. Dominant species of Abies, Picea, and Larix in the CTCFs, are more tolerant to winter coldness than Tsuga and broad-leaved trees including deciduous broad-leaved Acer and Betula, evergreen broad- leaved Cyclobalanopsis and Lithocarpus in TCBLFs. Winter coldness may actually limit the cool-side distributions of TCBLFs in the areas between -1.35℃ and -4.05℃, and the warm-side distributions of CTCFs may be controlled by competition to the species of TCBLFs. Under future climate scenarios, the vulnerable area, where current potential (suitable + marginal) habitats (80,749 km^2) shift to non-habitats, was predicted to decrease to 55.91% (45,053 km^2) of the current area. Inferring from the current vegetation distribution pattern, TCBLFs will replace declining CTCFs. Vulnerable areas predicted by models are important in determining priority of ecosystem conservation.