On the basis of ecological principles including holistic optimization, cycling and regeneration, and regional differentiation, land treatment systems (LTSs) for municipal wastewater were continuously explored and upda...On the basis of ecological principles including holistic optimization, cycling and regeneration, and regional differentiation, land treatment systems (LTSs) for municipal wastewater were continuously explored and updated in the western Shenyang area and the Huolinhe area, China. Intensified pretreatment, addition of a man-made soil filtration layer, and use of an ecologically diversified secondary plant cover were proved to be technically feasible. Hydraulic loading was determined according to the assimilation capacity of soil ecosystems, thus ensuring safe operation of wastewater treatment. This modernized and alternative approach to wastewater treatment had been widely applied in middle-sized and small cities and towns of Northeast China, and these innovative systems in some areas had indicated favorable ecological, social, and economic benefits.展开更多
Coral reefs in the Negril Marine Park (NMP), Jamaica, have been increasingly impacted by nutrient pollution and macroalgal blooms following decades of intensive development as a major tourist destination. A baseline...Coral reefs in the Negril Marine Park (NMP), Jamaica, have been increasingly impacted by nutrient pollution and macroalgal blooms following decades of intensive development as a major tourist destination. A baseline survey of DIN and SRP concentrations, C:N:P and stable nitrogen isotope ratios (δ^15N) of abundant reef macroalgae on shallow and deep reefs of the NMP in 1998 showed strong P-limitation and evidence of increasing sewage pollution. In 1999, a sewage collection and treatment project began diverting wastewater from the resort and urban areas to a pond system that discharged partially-treated effluent into the South Negril River (SNR). These sewage discharges significantly increased concentrations of NH2 and SRP (N:P -13) in the SNR, which flows into Long Bay and around Negril's "West End". Concentrations of SRP, the primary limiting nutrient, were higher on shallow reefs of the West End in 2001 compared to 1998. Stable nitrogen isotope ratios (δ^15N) of abundant reef macroalgae on both shallow and deep reefs of the West End in 2002 were significantly higher than baseline values in 1998, indicating an escalating impact of sewage nitrogen pollution over this timeframe. The increased nutrient concentrations and δ^15N enrichment of reef macroalgae correlated with blooms of the chlorophyte Chaetornorpha linum in shallow waters of Long Bay and Codium isthrnocladum and Caulerpa cupressoides on deep reefs of the West End. Sewage treatment systems adjacent to coral reefs must include nutrient removal to ensure that DIN and SRP concentrations, after dilution, are below the low thresholds noted for these oligotrophic ecosystems.展开更多
A lab-scale integrated treatment system including the novel sequence bio-ecological process (SBEP) and biological aerated filter (BAF) for a sewage mixture (chemistry laboratory wastewater and domestic sewage) w...A lab-scale integrated treatment system including the novel sequence bio-ecological process (SBEP) and biological aerated filter (BAF) for a sewage mixture (chemistry laboratory wastewater and domestic sewage) was presented in this paper. The main objective of the study was to test the contribution of artificial aeration, recir-culation ratio and mass concentration of steel slag on pollutant removal in winter when the plants are dormant. It had been shown that SBEP and BAF play different roles in removing contaminants from wastewater. During the airflow experiment, the removal efficiency of COD and TP in SBEP was higher than that in BAF, whereas BAF can compensate for the deficiency of SBEP where no significant improvement on ammonium nitrogen removal is ob-served. Yet, the removal etticiencies of COD,TP and NH4^+ -N in SBEP could be improved apparently when ditterent recireulation ratio or various mass concentration of steel were applied. Especially, when the airflow of 0.06 L·h^-1, the recirculation ratio rate of 80% and the mass concentration of steel of 2.2-2.4 g·L^-1 were applied, thehighest efficiency of 94.6%, 77.9% and 80.7% for COD, TP and NH4^+ -N were achieved,-respectively,The integrated treatment system of SBEP and BAF was proved to be an effective wastewater treatment technique and a better alternative to treat domestic sewage.展开更多
Trace organic contaminants (TOCs) correspond to a broad range of molecules generated either directly or indirectly by human activity. Even though TOCs are found at low concentrations in the environment, they often acc...Trace organic contaminants (TOCs) correspond to a broad range of molecules generated either directly or indirectly by human activity. Even though TOCs are found at low concentrations in the environment, they often accumulate by biomagnification and bioaccumulation into biological organisms and cause irreversible damages in biological systems through direct or indirect toxic effects such as endocrine disruption and tumour initiation. This manuscript presents the main findings of over fifteen years of research focusing on biological removal of various TOCs found in sewage sludge from urban treatment plants. A special focus of the research was made on microbial processes in complex anaerobic ecosystems. Four families of compounds mostly retrieved in urban plants were studied: the polycyclic aromatic hydrocarbons (PAHs), the polychlorobiphenyls (PCBs), the phthalic acid esters (PAEs), and the nonylphenol ethoxylates (NPEs). It was observed that the microbial capability for removing low amounts of TOCs required a long adaptation time and was often limited by the bioavailability of these compounds. In fact, the overall biodegradation resulted from the numerous interactions existing between the matrix (organic matter) and the microbial ecosystems according to the physico-chemical sorption properties of these compounds. Mechanistic aspects were also tackled in depth and specific models were developed for better understanding the network of interactions between TOCs, microorganisms, and organic matter. These findings could be extrapolated to other ecosystems such as soils and sediments. Finally, it was shown that microbial cometabolism was essential for TOC removal, and the concept of bioavailability was not only dependent on the nature, the level, and the sorption properties of TOCs but was also strongly dependent on the nature and the concentration of the sludge organic matter. Specific parameters were proposed for better evaluating the fate of TOCs in microbial anaerobic processes and technological solutions for efficient removal of these compounds were also proposed.展开更多
基金Project supported by the National Natural Science Founds for Distinguished Young Scholars, China (No. 20225722)the Key Programme of the National Natural Science Foundation of China (No. 20337010)
文摘On the basis of ecological principles including holistic optimization, cycling and regeneration, and regional differentiation, land treatment systems (LTSs) for municipal wastewater were continuously explored and updated in the western Shenyang area and the Huolinhe area, China. Intensified pretreatment, addition of a man-made soil filtration layer, and use of an ecologically diversified secondary plant cover were proved to be technically feasible. Hydraulic loading was determined according to the assimilation capacity of soil ecosystems, thus ensuring safe operation of wastewater treatment. This modernized and alternative approach to wastewater treatment had been widely applied in middle-sized and small cities and towns of Northeast China, and these innovative systems in some areas had indicated favorable ecological, social, and economic benefits.
文摘Coral reefs in the Negril Marine Park (NMP), Jamaica, have been increasingly impacted by nutrient pollution and macroalgal blooms following decades of intensive development as a major tourist destination. A baseline survey of DIN and SRP concentrations, C:N:P and stable nitrogen isotope ratios (δ^15N) of abundant reef macroalgae on shallow and deep reefs of the NMP in 1998 showed strong P-limitation and evidence of increasing sewage pollution. In 1999, a sewage collection and treatment project began diverting wastewater from the resort and urban areas to a pond system that discharged partially-treated effluent into the South Negril River (SNR). These sewage discharges significantly increased concentrations of NH2 and SRP (N:P -13) in the SNR, which flows into Long Bay and around Negril's "West End". Concentrations of SRP, the primary limiting nutrient, were higher on shallow reefs of the West End in 2001 compared to 1998. Stable nitrogen isotope ratios (δ^15N) of abundant reef macroalgae on both shallow and deep reefs of the West End in 2002 were significantly higher than baseline values in 1998, indicating an escalating impact of sewage nitrogen pollution over this timeframe. The increased nutrient concentrations and δ^15N enrichment of reef macroalgae correlated with blooms of the chlorophyte Chaetornorpha linum in shallow waters of Long Bay and Codium isthrnocladum and Caulerpa cupressoides on deep reefs of the West End. Sewage treatment systems adjacent to coral reefs must include nutrient removal to ensure that DIN and SRP concentrations, after dilution, are below the low thresholds noted for these oligotrophic ecosystems.
基金Supported by the Important National Science & Technology Specific Projects (2009ZX07526-005-05)
文摘A lab-scale integrated treatment system including the novel sequence bio-ecological process (SBEP) and biological aerated filter (BAF) for a sewage mixture (chemistry laboratory wastewater and domestic sewage) was presented in this paper. The main objective of the study was to test the contribution of artificial aeration, recir-culation ratio and mass concentration of steel slag on pollutant removal in winter when the plants are dormant. It had been shown that SBEP and BAF play different roles in removing contaminants from wastewater. During the airflow experiment, the removal efficiency of COD and TP in SBEP was higher than that in BAF, whereas BAF can compensate for the deficiency of SBEP where no significant improvement on ammonium nitrogen removal is ob-served. Yet, the removal etticiencies of COD,TP and NH4^+ -N in SBEP could be improved apparently when ditterent recireulation ratio or various mass concentration of steel were applied. Especially, when the airflow of 0.06 L·h^-1, the recirculation ratio rate of 80% and the mass concentration of steel of 2.2-2.4 g·L^-1 were applied, thehighest efficiency of 94.6%, 77.9% and 80.7% for COD, TP and NH4^+ -N were achieved,-respectively,The integrated treatment system of SBEP and BAF was proved to be an effective wastewater treatment technique and a better alternative to treat domestic sewage.
基金Supported by the French Agency for Environment and Energy(ADEME) (No.0075033)the Ph.D.Grants and the Marie-Curie Fellowship of the European Union(No.MEIF-CT-2003-500956)
文摘Trace organic contaminants (TOCs) correspond to a broad range of molecules generated either directly or indirectly by human activity. Even though TOCs are found at low concentrations in the environment, they often accumulate by biomagnification and bioaccumulation into biological organisms and cause irreversible damages in biological systems through direct or indirect toxic effects such as endocrine disruption and tumour initiation. This manuscript presents the main findings of over fifteen years of research focusing on biological removal of various TOCs found in sewage sludge from urban treatment plants. A special focus of the research was made on microbial processes in complex anaerobic ecosystems. Four families of compounds mostly retrieved in urban plants were studied: the polycyclic aromatic hydrocarbons (PAHs), the polychlorobiphenyls (PCBs), the phthalic acid esters (PAEs), and the nonylphenol ethoxylates (NPEs). It was observed that the microbial capability for removing low amounts of TOCs required a long adaptation time and was often limited by the bioavailability of these compounds. In fact, the overall biodegradation resulted from the numerous interactions existing between the matrix (organic matter) and the microbial ecosystems according to the physico-chemical sorption properties of these compounds. Mechanistic aspects were also tackled in depth and specific models were developed for better understanding the network of interactions between TOCs, microorganisms, and organic matter. These findings could be extrapolated to other ecosystems such as soils and sediments. Finally, it was shown that microbial cometabolism was essential for TOC removal, and the concept of bioavailability was not only dependent on the nature, the level, and the sorption properties of TOCs but was also strongly dependent on the nature and the concentration of the sludge organic matter. Specific parameters were proposed for better evaluating the fate of TOCs in microbial anaerobic processes and technological solutions for efficient removal of these compounds were also proposed.