[Objective] This study aimed to investigate the effects of different sowing dates and sites on starch RVA profile characteristics of different ecotypes of japonica rice. [Method] Five different ecotypes of japonica ri...[Objective] This study aimed to investigate the effects of different sowing dates and sites on starch RVA profile characteristics of different ecotypes of japonica rice. [Method] Five different ecotypes of japonica rice were sown at seven different dates in four rice planting regions in Jiangsu Province to analyze the differences in starch RVA profile parameters among different rice varieties. [Result] Among eight parameters of rice starch RVA profile, peak time exhibited no significant differences among different sites, while other seven parameters varied significantly or extremely significantly among different sites, sowing dates and varieties. Specifically, rice variety exerted the most significant effects on rice starch RVA profile parameters. Starch RVA profile characteristics varied significantly among different ecological conditions but exhibited no significant differences among different latitudes. To be specific, in different sites, peak viscosity (PKV), hot paste viscosity (HPV) and breakdown viscosity (BDV) demonstrated a descending order of Huai'an 〉 Suzhou 〉 Lianyungang 〉 Yangzhou. Cool paste viscosity (CPV) and consistence viscosity (CSV) were higher in the north than in the south; specifically, CPV and CSV were significantly higher in Lianyungang and Huai'an than in Yangzhou and Suzhou. Setback viscosity (SBV) showed an increasing trend with increasing latitude; specifically, SBV was significantly lower in Suzhou than in other three sites. Pasting temperature (PAT) and peak time (PET) changed slightly among different latitudes. With the postponing of sowing date, peak viscosity (PKV), hot paste viscosity (HPV), cool paste viscosity (CPV) and peak time (PET) showed a decreasing trend, setback viscosity (SBV) and consistence viscosity (CSV) increased, breakdown viscosity (BDV) increased first and then decreased, whereas pasting temperature (PAT) decreased first and then increased. Furthermore, rice starch RVA profile parameters showed the same variation trend with sowing date in different sites; early sowing within suitable sowing dates could effectively improve the parameters of rice starch RVA profile. However, different parameters exerted different variations among different sites and most parameters were higher in the north than in the south, which indicated that starch RVA profile parameters were significantly affected by sowing date in the north of Jiangsu Province. Among eight starch RVA profile parameters, setback viscosity exhibited the maximum variation coefficient, while peak time exhibited the minimum variation coefficient. Among five rice varieties, Nanjing 46 exhibited the highest peak viscosity and breakdown viscosity and the lowest setback viscosity and consistence viscosity, suggesting that Nanjing 46 had the most appropriate starch RVA profile characteristics and the best cooking and eating quality. Lianjing 4 exhibited relatively high peak viscosity and breakdown viscosity, and relatively low setback viscosity and consistence viscosity, suggesting that Lianjing 4 had good starch RVA profile characteristics. Different sowing dates and sites exerted significant effects on starch RVA profiles of different eco- types of japonica rice. Rice starch RVA profile characteristics varied significantly among different sites but exhibited no significant variations among different latitudes. In addition, starch RVA profile characteristics varied significantly among different sowing dates. Therefore, early sowing of the same variety was conducive to improving starch RVA profile characteristics in appropriate planting regions. [Conclusion] This study provided a theoretical basis for producing high-quality rice and improving the eating quality of rice in Jiangsu Province.展开更多
[Objective] The aim was to improve and restore destroyed riverine and water ecosystem and to prevent bio-diversity from deteriorating in Jari demonstration plot in Ethiopia. [Method] Biological engineering and natural...[Objective] The aim was to improve and restore destroyed riverine and water ecosystem and to prevent bio-diversity from deteriorating in Jari demonstration plot in Ethiopia. [Method] Biological engineering and naturalization were made use of to protect nature and restore wetland as per Succession Theory. [Result] Both of eco- environment and eco-functions of Mille River were restored through reconstruction of biocenosis in wetlands. [Conclusion] It is feasible to implement matched ecological projects in semiarid regions in East Africa, providing references for restoration and protection of local water resources.展开更多
The rice husk ash ( RHA) and silica ( Si02) nanoparticles are prepared from rice husk charcoal (RHC) by the methods of ventilated calcining and chemical precipitation, respectively, to remove the residual carbon...The rice husk ash ( RHA) and silica ( Si02) nanoparticles are prepared from rice husk charcoal (RHC) by the methods of ventilated calcining and chemical precipitation, respectively, to remove the residual carbon which is harmful to cement composites. The structures and morphologies of these products are investigated by the Fourier transform infrared spectroscopy, X-ray diffraction, scanning/ transmission electron microscopy and N2 adsorption- desorption analyzer. The results show that the as-produced RHA and Si02 nanoparticles exist in amorphous phase without residual carbon, and exhibit porous structures with specific surface areas of 170.19 and 248. 67 m2 /g , respectively. The micro particles of RHA are aggregated by numerous loosely packed Si02 gel particles with the diameter of 50 to 100 nm. The Si02 nanoparticles are well dispersed with the average size of about 30 nm. Both the RHA and Si02 nanoparticles can significantly reduce the conductivity of saturated Ca(OH)2 solution and increase the early strength of the cement composites. They also exhibit high pozzolanic activity, indicating that they can be used as ecological nano mineral admixtures.展开更多
By field experiments with Uniform Design, the effects of planting density and nitrogen rate on three varieties (Yunrui No.8, Yunrui No.6 and Yunrui No.88) grain yield under different ecological conditions were studi...By field experiments with Uniform Design, the effects of planting density and nitrogen rate on three varieties (Yunrui No.8, Yunrui No.6 and Yunrui No.88) grain yield under different ecological conditions were studied in Yunnan Province. The results showed that the grain yields were different among the five experiment locations, when increasing of planting density, it did not affected the plant height, ear height and ear factor, with the planting density increased, stem diameter, leaf width, ear length, number of grains per row and 1 000-grain weight decreased sig- nificantly, but the grain yield of the third varieties increased. High planting density had a negative impact on ear traits, but the grain yield increased by high-density compensate for the adverse effects.Control space and time of fertilizer application can reach the highest yield under less Nitrogen fertilizer Yunrui 88 had the charec- teristics of wide range of adaptability and the density-tolerance, high-yielding poten- tial, which was favorable in planting on large areas.展开更多
Sticky rice is not only a notoriously food, or a kind of important medicinal herb, but also serves as a kind of important engineering materials having rich re- sources. Sticky rice has excellent toughness, anti-seepag...Sticky rice is not only a notoriously food, or a kind of important medicinal herb, but also serves as a kind of important engineering materials having rich re- sources. Sticky rice has excellent toughness, anti-seepage property, bonding proper- ty, reinforcing property, high strength and superior engineering performance with su- perior engineering value, ecolOgical value and landscape value on account of its starch composition mainly composed of amylopectin of which the granules are poly- hedron. The development and application of sticky rice has important strategic signif- icance to promotion of sustainable development of ecological landscape construction, alleviation of resource shortage, reduction of environmental pollution, acceleration of constructing environmental friendly society and realization of sustainable development of China.展开更多
To improve the comparability of the research results of ecological industry, the ecological footprint is appliedto analyze the resource utilization and environmental pollution in various subsystems, taking maize-MSG a...To improve the comparability of the research results of ecological industry, the ecological footprint is appliedto analyze the resource utilization and environmental pollution in various subsystems, taking maize-MSG as a case.Results show that the production process from maize to MSG is a extended process of ecological footprint, and that theecological footprint of the maize production is the biggest; the extension of ecological footprint is followed by the increaseof footprint profit, which means that the extension of production chain is an important method to improve the resourcesprofit; the systems have a big proportion of the indirect energy ecological footprint; the air and water pollution in MSGsubsystem is the most serious. At last, it can be identified that ecological footprint is a good method to measure resourceutilization and environmental pollution in various subsystems of an integrated ecological industry.展开更多
Nanoparticles,or particles in size of 1-100 nm,are extensively used in the world in different applications.For instance,single-walled carbon nanotubes(SWCNTs) are commonly used in consumer products,such as biosensors,...Nanoparticles,or particles in size of 1-100 nm,are extensively used in the world in different applications.For instance,single-walled carbon nanotubes(SWCNTs) are commonly used in consumer products,such as biosensors,drug and vaccine delivery transporters,and novel biomaterials.Although nanoparticles do not cause safety concerns to consumers who use nanoparticle-containing products,these small particles are potentially harmful for workers who produce them in factories or in cases of discharge to aquatic ecosystems.SWCNTs do not have a natural analogue,so the effects on health of their disposal remain largely unknown.In this study,we evaluated the effects of SWCNTs on a population of the green microalga Chromochloris zofingiensis and the profile and production of pigments and fatty acids.The alga was incubated with SWCNTs for 6 days in 0(control),40,80,160,or 320 mg/L concentrations.SWCNTs showed both positive and negative effects on the growth of C.zofingiensis,with a biomass enhancement at low levels(40-160 mg/L) but inhibition at high levels(320 mg/L).By contrast,a decreased accumulation of fatty acids and pigments of C.zofingiensis was observed over the range of the tested concentrations.These results indicate that the markers on the inhibitive toxicity of SWCNTs are increasingly sensitive in the following order:biomass and fatty acids < primary carotenoids < chlorophylls < secondary carotenoids.C.zofingiensis is a suitable microalga for evaluating the ecotoxicological hazards of SWCNTs,especially in terms of pigmentation response.展开更多
An eco-friendly method for the extracellular synthesis of silver nanoparticles(AgNPs) using aqueous Araza fruit extract and their antioxidant activity was investigated. It was observed that UV–Vis absorption peak i...An eco-friendly method for the extracellular synthesis of silver nanoparticles(AgNPs) using aqueous Araza fruit extract and their antioxidant activity was investigated. It was observed that UV–Vis absorption peak is dependent on various parameters such as pH, temperature, and change of time. The initial appearance of the yellow color with intense surface plasmon bands at 430-450 nm, then transmission electron microscopy, scanning electron microscopy and X-ray diffraction analysis revealed the formation of 15-45 nm sized, spherical and crystalline Ag NPs. Fourier transform infrared spectroscopy depicted that malic acid, citric acid, and carotenoids of Araza fruit involved in the synthesis of Ag NPs. In addition, the surface modified AgNPs(77.42%, 1mL) showed nearly double antioxidant efficiency than Araza fruit extract(35.30%, 1 mL) against 1, 1-diphenyl-2-picrylhydrazyl. The present study highlights the possibility of using the Araza fruit to synthesize AgNPs, which could be used effectively in the present and future antioxidant agent.展开更多
Engineering nano-materials & their impact on human health or environmental security constitute a newly emerging R&D hot spot and a key problem now urgently waiting for its solution in supporting the sustainabi...Engineering nano-materials & their impact on human health or environmental security constitute a newly emerging R&D hot spot and a key problem now urgently waiting for its solution in supporting the sustainability of China's nano-science and related technology development. At present, water bodies in Chinese cities have been seriously polluted by metallic nano-particles (MNPs) while related monitoring data are found woefully lacking throughout the country. Based on the above understanding, this article gives a round-up explanation on distributive characteristics of MNPs in the river mouths or water bodies of Chinese cities, their ecological hazards as well as our research in this regard, providing some inspiring ideas and data for control over this scourge. In addition, our exploration probes the discharge traits of MNPs themselves and the mechanism underlying its impact on water pollution.展开更多
Spartina alterniflora is ecologically important in its original habitat; however, it has caused controversy since it was introduction into China(now it has been spreading rapidly on the Jiangsu, Shanghai, Zhejiang and...Spartina alterniflora is ecologically important in its original habitat; however, it has caused controversy since it was introduction into China(now it has been spreading rapidly on the Jiangsu, Shanghai, Zhejiang and Fujian coasts). The purpose of the present contribution is, on the basis of an analysis and synthesis of existing data sets, to evaluate the environmental-ecological effects of S. alterniflora, and to identify the relevant scientific problems that require further research in the future. Investigations have shown that, by reducing the near-bed shear stress associated with tidal currents, S. alterniflora can enhance the settling flux of suspended sediment and deposition rate on the tidal flats over the region. Further, field survey and analysis indicate that the S. alterniflora salt-marsh has a high primary production and provides a new type of habitat for the native benthic fauna. Some macro-, meio- and micro-fauna that used to live in the native salt-marshes have adapted to the S. alterniflora salt-marsh, forming a new ecosystem. Under the influences of a number of background factors, such as latitude variations and the coastal type, the environmental-ecological changes induced by Spartine have regional differentiations. To the north of Hangzhou Bay, with a high position of the pre-Holocene stratum base, a large width of the tidal flats, and a gentle bed slope, only a small part of the intertidal zone is occupied by the S. alterniflora salt-marsh. Here, the S. alterniflora salt-marshes mainly play a positive role in coastal protection and ecosystem functioning. In contrary, to the South of Hangzhou Bay, The pre-Holocene deposits are situated in relatively deeo waters, and the width of the tidal flats formed within coastal embayments is relatively narrow. As such, the expansion of S. alterniflora has squeezed the living space of other intertidal organisms, thus has a negative ecological effect. Therefore, the regional differentiation of the Spartina effects should be sufficiently considered in coastal development and management. Furthermore, in order to predict the future evolution of the S. alterniflora wetlands over the region, in addition to in situ monitoring and measurements, an ecosystem dynamic model should be established, taking into account the coupling of the rerrestrial and marine environmental-ecological processes.展开更多
Aims Long-term determination of root biomass production upon land-use conversion to biofuel crops is rare.To assess land-use legacy influences on belowground biomass accumulation,we converted 22-year-old Conservation ...Aims Long-term determination of root biomass production upon land-use conversion to biofuel crops is rare.To assess land-use legacy influences on belowground biomass accumulation,we converted 22-year-old Conservation Reserve Program(CRP)grasslands and 50+-year-old agricultural(AGR)lands to corn(C),switchgrass(Sw)and restored prairie(Pr)biofuel crops.We maintained one CRP grassland as a reference(Ref).We hypothesized that land-use history and crop type have significant effects on root density,with perennial crops on CRP grasslands having a higher root biomass productivity,while corn grown on former agricultural lands produce the lowest root biomass.Methods The ingrowth core method was used to determine in situ ingrowth root biomass,alongside measurements of aboveground net primary productivity(ANPP).Ancillary measurements,including air temperature,growing season length and precipitation were used to examine their influences on root biomass production.Important Findings Root biomass productivity was the highest in unconverted CRP grassland(1716 g m?2 yr?1)and lowest in corn fields(526 g m?2 yr?1).All perennial sites converted from CRP and AGR lands had lower root biomass and ANPP in the first year of planting but peaked in 2011 for switchgrass and a year later for restored prairies.Ecosystem stability was higher in restored prairies(AGR-Pr:4.3±0.11;CRP-Pr:4.1±0.10),with all monocultures exhibiting a lower stability.Root biomass production was positively related to ANPP(R2=0.40).Overall,attention should be given to root biomass accumulation in large-scale biofuel production as it is a major source of carbon sequestration.展开更多
文摘[Objective] This study aimed to investigate the effects of different sowing dates and sites on starch RVA profile characteristics of different ecotypes of japonica rice. [Method] Five different ecotypes of japonica rice were sown at seven different dates in four rice planting regions in Jiangsu Province to analyze the differences in starch RVA profile parameters among different rice varieties. [Result] Among eight parameters of rice starch RVA profile, peak time exhibited no significant differences among different sites, while other seven parameters varied significantly or extremely significantly among different sites, sowing dates and varieties. Specifically, rice variety exerted the most significant effects on rice starch RVA profile parameters. Starch RVA profile characteristics varied significantly among different ecological conditions but exhibited no significant differences among different latitudes. To be specific, in different sites, peak viscosity (PKV), hot paste viscosity (HPV) and breakdown viscosity (BDV) demonstrated a descending order of Huai'an 〉 Suzhou 〉 Lianyungang 〉 Yangzhou. Cool paste viscosity (CPV) and consistence viscosity (CSV) were higher in the north than in the south; specifically, CPV and CSV were significantly higher in Lianyungang and Huai'an than in Yangzhou and Suzhou. Setback viscosity (SBV) showed an increasing trend with increasing latitude; specifically, SBV was significantly lower in Suzhou than in other three sites. Pasting temperature (PAT) and peak time (PET) changed slightly among different latitudes. With the postponing of sowing date, peak viscosity (PKV), hot paste viscosity (HPV), cool paste viscosity (CPV) and peak time (PET) showed a decreasing trend, setback viscosity (SBV) and consistence viscosity (CSV) increased, breakdown viscosity (BDV) increased first and then decreased, whereas pasting temperature (PAT) decreased first and then increased. Furthermore, rice starch RVA profile parameters showed the same variation trend with sowing date in different sites; early sowing within suitable sowing dates could effectively improve the parameters of rice starch RVA profile. However, different parameters exerted different variations among different sites and most parameters were higher in the north than in the south, which indicated that starch RVA profile parameters were significantly affected by sowing date in the north of Jiangsu Province. Among eight starch RVA profile parameters, setback viscosity exhibited the maximum variation coefficient, while peak time exhibited the minimum variation coefficient. Among five rice varieties, Nanjing 46 exhibited the highest peak viscosity and breakdown viscosity and the lowest setback viscosity and consistence viscosity, suggesting that Nanjing 46 had the most appropriate starch RVA profile characteristics and the best cooking and eating quality. Lianjing 4 exhibited relatively high peak viscosity and breakdown viscosity, and relatively low setback viscosity and consistence viscosity, suggesting that Lianjing 4 had good starch RVA profile characteristics. Different sowing dates and sites exerted significant effects on starch RVA profiles of different eco- types of japonica rice. Rice starch RVA profile characteristics varied significantly among different sites but exhibited no significant variations among different latitudes. In addition, starch RVA profile characteristics varied significantly among different sowing dates. Therefore, early sowing of the same variety was conducive to improving starch RVA profile characteristics in appropriate planting regions. [Conclusion] This study provided a theoretical basis for producing high-quality rice and improving the eating quality of rice in Jiangsu Province.
基金Supported by South-South Cooperation Project of SSC/SPFS-FAO-Ethiopia-China~~
文摘[Objective] The aim was to improve and restore destroyed riverine and water ecosystem and to prevent bio-diversity from deteriorating in Jari demonstration plot in Ethiopia. [Method] Biological engineering and naturalization were made use of to protect nature and restore wetland as per Succession Theory. [Result] Both of eco- environment and eco-functions of Mille River were restored through reconstruction of biocenosis in wetlands. [Conclusion] It is feasible to implement matched ecological projects in semiarid regions in East Africa, providing references for restoration and protection of local water resources.
基金The Key Program of the National Natural Science Foundation of China(No.51438003)the National Basic Research Program of China(973 Program)(No.2015CB655105)
文摘The rice husk ash ( RHA) and silica ( Si02) nanoparticles are prepared from rice husk charcoal (RHC) by the methods of ventilated calcining and chemical precipitation, respectively, to remove the residual carbon which is harmful to cement composites. The structures and morphologies of these products are investigated by the Fourier transform infrared spectroscopy, X-ray diffraction, scanning/ transmission electron microscopy and N2 adsorption- desorption analyzer. The results show that the as-produced RHA and Si02 nanoparticles exist in amorphous phase without residual carbon, and exhibit porous structures with specific surface areas of 170.19 and 248. 67 m2 /g , respectively. The micro particles of RHA are aggregated by numerous loosely packed Si02 gel particles with the diameter of 50 to 100 nm. The Si02 nanoparticles are well dispersed with the average size of about 30 nm. Both the RHA and Si02 nanoparticles can significantly reduce the conductivity of saturated Ca(OH)2 solution and increase the early strength of the cement composites. They also exhibit high pozzolanic activity, indicating that they can be used as ecological nano mineral admixtures.
文摘By field experiments with Uniform Design, the effects of planting density and nitrogen rate on three varieties (Yunrui No.8, Yunrui No.6 and Yunrui No.88) grain yield under different ecological conditions were studied in Yunnan Province. The results showed that the grain yields were different among the five experiment locations, when increasing of planting density, it did not affected the plant height, ear height and ear factor, with the planting density increased, stem diameter, leaf width, ear length, number of grains per row and 1 000-grain weight decreased sig- nificantly, but the grain yield of the third varieties increased. High planting density had a negative impact on ear traits, but the grain yield increased by high-density compensate for the adverse effects.Control space and time of fertilizer application can reach the highest yield under less Nitrogen fertilizer Yunrui 88 had the charec- teristics of wide range of adaptability and the density-tolerance, high-yielding poten- tial, which was favorable in planting on large areas.
基金Supported by Science and Technology Planning Project of Hunan Province(2011NK3046)Hunan Leading Academic Discipline Project of Botany during the Twelfth Five-year~~
文摘Sticky rice is not only a notoriously food, or a kind of important medicinal herb, but also serves as a kind of important engineering materials having rich re- sources. Sticky rice has excellent toughness, anti-seepage property, bonding proper- ty, reinforcing property, high strength and superior engineering performance with su- perior engineering value, ecolOgical value and landscape value on account of its starch composition mainly composed of amylopectin of which the granules are poly- hedron. The development and application of sticky rice has important strategic signif- icance to promotion of sustainable development of ecological landscape construction, alleviation of resource shortage, reduction of environmental pollution, acceleration of constructing environmental friendly society and realization of sustainable development of China.
文摘To improve the comparability of the research results of ecological industry, the ecological footprint is appliedto analyze the resource utilization and environmental pollution in various subsystems, taking maize-MSG as a case.Results show that the production process from maize to MSG is a extended process of ecological footprint, and that theecological footprint of the maize production is the biggest; the extension of ecological footprint is followed by the increaseof footprint profit, which means that the extension of production chain is an important method to improve the resourcesprofit; the systems have a big proportion of the indirect energy ecological footprint; the air and water pollution in MSGsubsystem is the most serious. At last, it can be identified that ecological footprint is a good method to measure resourceutilization and environmental pollution in various subsystems of an integrated ecological industry.
基金Supported by the National Natural Science Foundation of China(No.50904051)the Science and Technology Planning Project of Yantai,China(No.2010247)the Open Fund of Shandong Oriental Ocean Sci-Tech Co.,Ltd.(No.200803)
文摘Nanoparticles,or particles in size of 1-100 nm,are extensively used in the world in different applications.For instance,single-walled carbon nanotubes(SWCNTs) are commonly used in consumer products,such as biosensors,drug and vaccine delivery transporters,and novel biomaterials.Although nanoparticles do not cause safety concerns to consumers who use nanoparticle-containing products,these small particles are potentially harmful for workers who produce them in factories or in cases of discharge to aquatic ecosystems.SWCNTs do not have a natural analogue,so the effects on health of their disposal remain largely unknown.In this study,we evaluated the effects of SWCNTs on a population of the green microalga Chromochloris zofingiensis and the profile and production of pigments and fatty acids.The alga was incubated with SWCNTs for 6 days in 0(control),40,80,160,or 320 mg/L concentrations.SWCNTs showed both positive and negative effects on the growth of C.zofingiensis,with a biomass enhancement at low levels(40-160 mg/L) but inhibition at high levels(320 mg/L).By contrast,a decreased accumulation of fatty acids and pigments of C.zofingiensis was observed over the range of the tested concentrations.These results indicate that the markers on the inhibitive toxicity of SWCNTs are increasingly sensitive in the following order:biomass and fatty acids < primary carotenoids < chlorophylls < secondary carotenoids.C.zofingiensis is a suitable microalga for evaluating the ecotoxicological hazards of SWCNTs,especially in terms of pigmentation response.
基金funded by the Prometeo Project of the National Secretariat of Higher Education, Science, Technology and Innovation (SENESCYT), Ecuador
文摘An eco-friendly method for the extracellular synthesis of silver nanoparticles(AgNPs) using aqueous Araza fruit extract and their antioxidant activity was investigated. It was observed that UV–Vis absorption peak is dependent on various parameters such as pH, temperature, and change of time. The initial appearance of the yellow color with intense surface plasmon bands at 430-450 nm, then transmission electron microscopy, scanning electron microscopy and X-ray diffraction analysis revealed the formation of 15-45 nm sized, spherical and crystalline Ag NPs. Fourier transform infrared spectroscopy depicted that malic acid, citric acid, and carotenoids of Araza fruit involved in the synthesis of Ag NPs. In addition, the surface modified AgNPs(77.42%, 1mL) showed nearly double antioxidant efficiency than Araza fruit extract(35.30%, 1 mL) against 1, 1-diphenyl-2-picrylhydrazyl. The present study highlights the possibility of using the Araza fruit to synthesize AgNPs, which could be used effectively in the present and future antioxidant agent.
文摘Engineering nano-materials & their impact on human health or environmental security constitute a newly emerging R&D hot spot and a key problem now urgently waiting for its solution in supporting the sustainability of China's nano-science and related technology development. At present, water bodies in Chinese cities have been seriously polluted by metallic nano-particles (MNPs) while related monitoring data are found woefully lacking throughout the country. Based on the above understanding, this article gives a round-up explanation on distributive characteristics of MNPs in the river mouths or water bodies of Chinese cities, their ecological hazards as well as our research in this regard, providing some inspiring ideas and data for control over this scourge. In addition, our exploration probes the discharge traits of MNPs themselves and the mechanism underlying its impact on water pollution.
基金supported financially by the Basic Research Project in Jiangsu Province (Grant No. SBK2011012)an National Natural Science Foundation of China (Grant No. 40476041)
文摘Spartina alterniflora is ecologically important in its original habitat; however, it has caused controversy since it was introduction into China(now it has been spreading rapidly on the Jiangsu, Shanghai, Zhejiang and Fujian coasts). The purpose of the present contribution is, on the basis of an analysis and synthesis of existing data sets, to evaluate the environmental-ecological effects of S. alterniflora, and to identify the relevant scientific problems that require further research in the future. Investigations have shown that, by reducing the near-bed shear stress associated with tidal currents, S. alterniflora can enhance the settling flux of suspended sediment and deposition rate on the tidal flats over the region. Further, field survey and analysis indicate that the S. alterniflora salt-marsh has a high primary production and provides a new type of habitat for the native benthic fauna. Some macro-, meio- and micro-fauna that used to live in the native salt-marshes have adapted to the S. alterniflora salt-marsh, forming a new ecosystem. Under the influences of a number of background factors, such as latitude variations and the coastal type, the environmental-ecological changes induced by Spartine have regional differentiations. To the north of Hangzhou Bay, with a high position of the pre-Holocene stratum base, a large width of the tidal flats, and a gentle bed slope, only a small part of the intertidal zone is occupied by the S. alterniflora salt-marsh. Here, the S. alterniflora salt-marshes mainly play a positive role in coastal protection and ecosystem functioning. In contrary, to the South of Hangzhou Bay, The pre-Holocene deposits are situated in relatively deeo waters, and the width of the tidal flats formed within coastal embayments is relatively narrow. As such, the expansion of S. alterniflora has squeezed the living space of other intertidal organisms, thus has a negative ecological effect. Therefore, the regional differentiation of the Spartina effects should be sufficiently considered in coastal development and management. Furthermore, in order to predict the future evolution of the S. alterniflora wetlands over the region, in addition to in situ monitoring and measurements, an ecosystem dynamic model should be established, taking into account the coupling of the rerrestrial and marine environmental-ecological processes.
基金Support for this research was provided by the Great Lakes Bioenergy Research Center,U.S.Department of Energy,Office of Science,Office of Biological and Environmental Research(Awards DE-SC0018409 and DE-FCO2-07ER64494)by the National Science Foundation Long-term Ecological Research Program(DEB 1832042)at the Kellogg Biological Station,and by Michigan State University AgBioResearch.
文摘Aims Long-term determination of root biomass production upon land-use conversion to biofuel crops is rare.To assess land-use legacy influences on belowground biomass accumulation,we converted 22-year-old Conservation Reserve Program(CRP)grasslands and 50+-year-old agricultural(AGR)lands to corn(C),switchgrass(Sw)and restored prairie(Pr)biofuel crops.We maintained one CRP grassland as a reference(Ref).We hypothesized that land-use history and crop type have significant effects on root density,with perennial crops on CRP grasslands having a higher root biomass productivity,while corn grown on former agricultural lands produce the lowest root biomass.Methods The ingrowth core method was used to determine in situ ingrowth root biomass,alongside measurements of aboveground net primary productivity(ANPP).Ancillary measurements,including air temperature,growing season length and precipitation were used to examine their influences on root biomass production.Important Findings Root biomass productivity was the highest in unconverted CRP grassland(1716 g m?2 yr?1)and lowest in corn fields(526 g m?2 yr?1).All perennial sites converted from CRP and AGR lands had lower root biomass and ANPP in the first year of planting but peaked in 2011 for switchgrass and a year later for restored prairies.Ecosystem stability was higher in restored prairies(AGR-Pr:4.3±0.11;CRP-Pr:4.1±0.10),with all monocultures exhibiting a lower stability.Root biomass production was positively related to ANPP(R2=0.40).Overall,attention should be given to root biomass accumulation in large-scale biofuel production as it is a major source of carbon sequestration.