Water-related ecosystem services is a hot topic in ecological research. Water supply services are crucial to regional water cycles and water quantity balance. The Dongjiang Lake basin is a national priority river basi...Water-related ecosystem services is a hot topic in ecological research. Water supply services are crucial to regional water cycles and water quantity balance. The Dongjiang Lake basin is a national priority river basin in China where ecological compensation pilot programs concerning water resources and water supply services are top priorities for ecosystem service protection. We analyzed spatial and temporal patterns associated with generation and use of water supply services in the Dongjiang Lake basin using the In VEST model, socio-economic data and water resource data. We found that between 1995 and 2010, water yield in the Dongjiang Lake basin and its beneficiary areas increased before declining, varying 9350–12 400 m3 ha-1 y-1; average water yield peaked in 2000. The spatial distribution patterns of water yield during these years are similar, progressively decreasing from upstream to downstream with a remarkable reduction in surrounding areas of city clusters. Average water consumption of the basin and its beneficiary areas ranged from 2900–4450 m3 ha-1 y-1 between 1995 and 2010; the spatial distribution patterns of water consumption during these years are similar, dropping gradually from urban construction land to its surroundings with a stronger gradient between urban and rural areas. More water was consumed on both banks and surroundings of the lake. From 1995 to 2010, water supply fell short of demand for urban construction land and its proximity as well as areas along the lake. Water supply services were able to satisfy needs in other regions. The Changsha-Zhuzhou-Xiangtan city cluster suffers from the most strained water supply.展开更多
Rapid urbanization causing serious air pollution and ecological risks in the Beijing–Tianjin–Hebei region in North China has attracted worldwide attention. This study estimates the key ecosystem services of land cov...Rapid urbanization causing serious air pollution and ecological risks in the Beijing–Tianjin–Hebei region in North China has attracted worldwide attention. This study estimates the key ecosystem services of land covers in Zhangjiakou and Chengde, and analyzes their main contributions and the effects of ecosystem service flows to Beijing. Results indicated that the total economic value of key ecosystem services in the Zhangjiakou–Chengde region was CNY 189.5 billion in 2013, and that these services were generated mainly from the forestlands, grasslands, and farmlands of Chengde and the eastern region of Zhangjiakou. However, nearly half of land covers provided low ecosystem service values and thus should be enhanced. In addition, approximately 21% of key ecosystem services were delivered from the Zhangjiakou–Chengde region into Beijing, and the flow feasibilities of ecosystem services delivered by water and wind reached 34% and 12%, respectively. Chicheng, Zhuolu, Chongli, Huailai, Xuanhua and Guyuan counties contributed 61% of the ecosystem services flowing into Beijing, and each service showed high regional relationships with Beijing(flow index ≥ 40%). Thus, these services should be prioritized in terms of ecological compensation funds and policies from Beijing.展开更多
基金the National Science and Technology Support Program(2013BAC03B05)National Natural Science Foundation of China(31400411)
文摘Water-related ecosystem services is a hot topic in ecological research. Water supply services are crucial to regional water cycles and water quantity balance. The Dongjiang Lake basin is a national priority river basin in China where ecological compensation pilot programs concerning water resources and water supply services are top priorities for ecosystem service protection. We analyzed spatial and temporal patterns associated with generation and use of water supply services in the Dongjiang Lake basin using the In VEST model, socio-economic data and water resource data. We found that between 1995 and 2010, water yield in the Dongjiang Lake basin and its beneficiary areas increased before declining, varying 9350–12 400 m3 ha-1 y-1; average water yield peaked in 2000. The spatial distribution patterns of water yield during these years are similar, progressively decreasing from upstream to downstream with a remarkable reduction in surrounding areas of city clusters. Average water consumption of the basin and its beneficiary areas ranged from 2900–4450 m3 ha-1 y-1 between 1995 and 2010; the spatial distribution patterns of water consumption during these years are similar, dropping gradually from urban construction land to its surroundings with a stronger gradient between urban and rural areas. More water was consumed on both banks and surroundings of the lake. From 1995 to 2010, water supply fell short of demand for urban construction land and its proximity as well as areas along the lake. Water supply services were able to satisfy needs in other regions. The Changsha-Zhuzhou-Xiangtan city cluster suffers from the most strained water supply.
基金National Major Research Development Program of China(2016YFC0503403)Special Institute Cultivation Project of Institute of Geographical Sciences and Natural Resources Research,Chinese Academy of Sciences(TSYJS05)
文摘Rapid urbanization causing serious air pollution and ecological risks in the Beijing–Tianjin–Hebei region in North China has attracted worldwide attention. This study estimates the key ecosystem services of land covers in Zhangjiakou and Chengde, and analyzes their main contributions and the effects of ecosystem service flows to Beijing. Results indicated that the total economic value of key ecosystem services in the Zhangjiakou–Chengde region was CNY 189.5 billion in 2013, and that these services were generated mainly from the forestlands, grasslands, and farmlands of Chengde and the eastern region of Zhangjiakou. However, nearly half of land covers provided low ecosystem service values and thus should be enhanced. In addition, approximately 21% of key ecosystem services were delivered from the Zhangjiakou–Chengde region into Beijing, and the flow feasibilities of ecosystem services delivered by water and wind reached 34% and 12%, respectively. Chicheng, Zhuolu, Chongli, Huailai, Xuanhua and Guyuan counties contributed 61% of the ecosystem services flowing into Beijing, and each service showed high regional relationships with Beijing(flow index ≥ 40%). Thus, these services should be prioritized in terms of ecological compensation funds and policies from Beijing.