Soil organisms in terrestrial systems are unevenly distributed in time and space, and often aggregated. Spatiotemporal patchiness in the soil environment is thought to be crucial for the maintenance of soil biodiversi...Soil organisms in terrestrial systems are unevenly distributed in time and space, and often aggregated. Spatiotemporal patchiness in the soil environment is thought to be crucial for the maintenance of soil biodiversity, providing diverse microhabitats tightly interweaving with resource partitioning. Determination of a "scale unit" to help understand ecological processes has become one of the important and most debatable problems in recent years. A fieldwork was carried out in the northern Negev Desert highland, Israel to determine the influence of fine-scale landscape patch moisture heterogeneity on biogeochemical variables and microbial activity linkage in a desert ecosystem. The results showed that the spatio-temporal patchiness of soil moisture to which we attribute influential properties, was found to become more heterogenic with the decrease in soil moisture availability (from 8.2 to 0.4 g kg^-1) toward the hot, dry seasons, with coefficient of variation (CV) change amounting to 66.9%. Spatio-temporal distribution of organic matter (OM) and total soluble nitrogen (TSN) was found to be relatively uniformly distributed throughout the wet seasons (winter and spring), with increase of relatively high heterogeneity toward the dry seasons (from 0.25% to 2.17% for OM, and from 0 to 10.2 mg kg^-1 for TSN) with CV of 47.4% and 99.7% for OM and TSN, respectively. Different spatio-temporal landscape patterns were obtained for Ca (CV = 44.6%), K (CV = 34.4%), and Na (CV = 92%) ions throughout the study period. CO2 evolution (CV = 48.6%) was found to be of lower heterogeneity (varying between 2 and 39 g CO2-C g^-1 dry soil h^-1) in the moist seasons, e.g., winter and spring, with lower values of respiration coupled with high heterogeneity of Na^+ and low levels of TSN and organic matter content, and with more homogeneity in the dry seasons (varying between 1 and 50 g CO2-C g^-1 dry soil h^-1). Our results elucidate the heterogeneity and complexity of desert system habitats affecting soil biota activity.展开更多
文摘Soil organisms in terrestrial systems are unevenly distributed in time and space, and often aggregated. Spatiotemporal patchiness in the soil environment is thought to be crucial for the maintenance of soil biodiversity, providing diverse microhabitats tightly interweaving with resource partitioning. Determination of a "scale unit" to help understand ecological processes has become one of the important and most debatable problems in recent years. A fieldwork was carried out in the northern Negev Desert highland, Israel to determine the influence of fine-scale landscape patch moisture heterogeneity on biogeochemical variables and microbial activity linkage in a desert ecosystem. The results showed that the spatio-temporal patchiness of soil moisture to which we attribute influential properties, was found to become more heterogenic with the decrease in soil moisture availability (from 8.2 to 0.4 g kg^-1) toward the hot, dry seasons, with coefficient of variation (CV) change amounting to 66.9%. Spatio-temporal distribution of organic matter (OM) and total soluble nitrogen (TSN) was found to be relatively uniformly distributed throughout the wet seasons (winter and spring), with increase of relatively high heterogeneity toward the dry seasons (from 0.25% to 2.17% for OM, and from 0 to 10.2 mg kg^-1 for TSN) with CV of 47.4% and 99.7% for OM and TSN, respectively. Different spatio-temporal landscape patterns were obtained for Ca (CV = 44.6%), K (CV = 34.4%), and Na (CV = 92%) ions throughout the study period. CO2 evolution (CV = 48.6%) was found to be of lower heterogeneity (varying between 2 and 39 g CO2-C g^-1 dry soil h^-1) in the moist seasons, e.g., winter and spring, with lower values of respiration coupled with high heterogeneity of Na^+ and low levels of TSN and organic matter content, and with more homogeneity in the dry seasons (varying between 1 and 50 g CO2-C g^-1 dry soil h^-1). Our results elucidate the heterogeneity and complexity of desert system habitats affecting soil biota activity.