As an important product of Moderate Resolution Imaging Spectroradiometer(MODIS), MOD17A2 provides dramatic improvements in our ability to accurately and continuously monitor global terrestrial primary production, whic...As an important product of Moderate Resolution Imaging Spectroradiometer(MODIS), MOD17A2 provides dramatic improvements in our ability to accurately and continuously monitor global terrestrial primary production, which is also significant in effort to advance scientific research and eco-environmental management. Over the past decades, forests have moderated climate change by sequestrating about one-quarter of the carbon emitted by human activities through fossil fuels burning and land use/land cover change. Thus, the carbon uptake by forests reduces the rate at which carbon accumulates in the atmosphere. However, the sensitivity of near real-time MODIS gross primary productivity(GPP) product is directly constrained by uncertainties in the modeling process, especially in complicated forest ecosystems. Although there have been plenty of studies to verify MODIS GPP with ground-based measurements using the eddy covariance(EC) technique, few have comprehensively validated the performance of MODIS estimates(Collection 5) across diverse forest types. Therefore, the present study examined the degree of correspondence between MODIS-derived GPP and EC-measured GPP at seasonal and interannual time scales for the main forest ecosystems, including evergreen broadleaf forest(EBF), evergreen needleleaf forest(ENF), deciduous broadleaf forest(DBF), and mixed forest(MF) relying on 16 flux towers with a total of 68 site-year datasets. Overall, site-specific evaluation of multi-year mean annual GPP estimates indicates that the current MOD17A2 product works highly effectively for MF and DBF, moderately effectively for ENF, and ineffectively for EBF. Except for tropical forest, MODIS estimates could capture the broad trends of GPP at 8-day time scale for all other sites surveyed. On the annual time scale, the best performance was observed in MF, followed by ENF, DBF, and EBF. Trend analyses also revealed the poor performance of MODIS GPP product in EBF and DBF. Thus, improvements in the sensitivity of MOD17A2 to forest productivity require continued efforts.展开更多
The fragility of ecosystem health has become a key factor hindering the sustainable development of the ecological environment. Through a review of published research from domestic and foreign scholars, starting from t...The fragility of ecosystem health has become a key factor hindering the sustainable development of the ecological environment. Through a review of published research from domestic and foreign scholars, starting from the endogenous logic of studies in the field of ecosystem vulnerability(EV), this paper sorts out the literature on the aspects of measurement models, prediction methods and risk assessment, comprehensively defines the research category and scientific framework of EV, and analyzes the research ideas and development trends. We arrived at the following conclusions: 1) The connotation of ecosystem vulnerability not only embodies the change in the vulnerability of the natural environment, but it also reflects the irreversible damage to the ecosystem caused by excessive development and industrial production activities. 2) The setting of ecosystem vulnerability indices should aim to fully reflect the essential features of that vulnerability, which should include the index systems of natural, social, economic and other related factors. 3) There are many types of ecosystem vulnerability measurement methods, prediction models and risk evaluation models, which have different focuses and advantages. The most appropriate method should be adopted for conducting comprehensive and systematic evaluation, prediction and estimation according to the different representation and evolution mechanisms of the chosen research object and regional ecosystem vulnerability. 4) Based on the regional system characteristics, corresponding risk management measures should be proposed, and pertinent policy suggestions should be put forward to improve the ecological safety and sustainable development of an ecologically vulnerable area.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41401221,41271500,41201496)Opening Fund of Key Laboratory of Poyang Lake Wetland and Watershed Research(Jiangxi Normal University),Ministry of Education,China(No.PK2014002)
文摘As an important product of Moderate Resolution Imaging Spectroradiometer(MODIS), MOD17A2 provides dramatic improvements in our ability to accurately and continuously monitor global terrestrial primary production, which is also significant in effort to advance scientific research and eco-environmental management. Over the past decades, forests have moderated climate change by sequestrating about one-quarter of the carbon emitted by human activities through fossil fuels burning and land use/land cover change. Thus, the carbon uptake by forests reduces the rate at which carbon accumulates in the atmosphere. However, the sensitivity of near real-time MODIS gross primary productivity(GPP) product is directly constrained by uncertainties in the modeling process, especially in complicated forest ecosystems. Although there have been plenty of studies to verify MODIS GPP with ground-based measurements using the eddy covariance(EC) technique, few have comprehensively validated the performance of MODIS estimates(Collection 5) across diverse forest types. Therefore, the present study examined the degree of correspondence between MODIS-derived GPP and EC-measured GPP at seasonal and interannual time scales for the main forest ecosystems, including evergreen broadleaf forest(EBF), evergreen needleleaf forest(ENF), deciduous broadleaf forest(DBF), and mixed forest(MF) relying on 16 flux towers with a total of 68 site-year datasets. Overall, site-specific evaluation of multi-year mean annual GPP estimates indicates that the current MOD17A2 product works highly effectively for MF and DBF, moderately effectively for ENF, and ineffectively for EBF. Except for tropical forest, MODIS estimates could capture the broad trends of GPP at 8-day time scale for all other sites surveyed. On the annual time scale, the best performance was observed in MF, followed by ENF, DBF, and EBF. Trend analyses also revealed the poor performance of MODIS GPP product in EBF and DBF. Thus, improvements in the sensitivity of MOD17A2 to forest productivity require continued efforts.
基金The National Social Science Fundation of China (17XJY020)The National Natural Science Foundation of China (71963028)The Discipline Construction Project for Ningxia Institutions of Higher Education (Discipline of Theoretical Economics)(NXYLXK2017B04)。
文摘The fragility of ecosystem health has become a key factor hindering the sustainable development of the ecological environment. Through a review of published research from domestic and foreign scholars, starting from the endogenous logic of studies in the field of ecosystem vulnerability(EV), this paper sorts out the literature on the aspects of measurement models, prediction methods and risk assessment, comprehensively defines the research category and scientific framework of EV, and analyzes the research ideas and development trends. We arrived at the following conclusions: 1) The connotation of ecosystem vulnerability not only embodies the change in the vulnerability of the natural environment, but it also reflects the irreversible damage to the ecosystem caused by excessive development and industrial production activities. 2) The setting of ecosystem vulnerability indices should aim to fully reflect the essential features of that vulnerability, which should include the index systems of natural, social, economic and other related factors. 3) There are many types of ecosystem vulnerability measurement methods, prediction models and risk evaluation models, which have different focuses and advantages. The most appropriate method should be adopted for conducting comprehensive and systematic evaluation, prediction and estimation according to the different representation and evolution mechanisms of the chosen research object and regional ecosystem vulnerability. 4) Based on the regional system characteristics, corresponding risk management measures should be proposed, and pertinent policy suggestions should be put forward to improve the ecological safety and sustainable development of an ecologically vulnerable area.