At present, the methods widely applied to assess ecological risk of heavy metals are essentially single-point estimates in which exposure and toxicity data cannot be fully used and probabilities of adverse biological ...At present, the methods widely applied to assess ecological risk of heavy metals are essentially single-point estimates in which exposure and toxicity data cannot be fully used and probabilities of adverse biological effects cannot be achieved. In this study, based on investigation of concentrations of six heavy metals(As, Hg, Pb, Cd, Cu, and Zn) in the surface seawater and sediment near the outlet of a zinc factory, located in Huludao City, Liaoning Province, China, a tiered approach consisting of several probabilistic options was used to refi ne ecological risk assessment for the individuals. A mixture of various heavy metals was detected in the surface seawater, and potential ecological risk index(PERI) was adopted to assess the potential ecological risk of heavy metals in the surface sediment. The results from all levels of aquatic ecological risk assessment in the tiered framework, ranging from comparison of single effects and exposure values to the use of distribution-based Hazard Quotient obtained through Monte Carlo simulation, are consistent with each other. Briefl y, aquatic Zn and Cu posed a clear ecological risk, while Cd, Pb, Hg, and As in the water column posed potential risk. As expected, combined ecological risk of heavy metal mixture in the surface seawater was proved signifi cantly higher than the risk caused by any individual heavy metal, calculated using the concept of total equivalent concentration. According to PERI, the severity of pollution by the six heavy metals in the surface sediment decreased in the following sequence: Cd>Hg>As>Pb>Cu>Zn, and the total heavy metals in the sediment posed a very high risk to the marine environment. This study provides a useful mathematical framework for ecological risk assessment of heavy metals.展开更多
Transient liquid phase(TLP)bonding is a potential high-temperature(HT)electron packaging technology that is used inthe interconnection of wide band-gap semiconductors.This study focused on the mechanism of intermetall...Transient liquid phase(TLP)bonding is a potential high-temperature(HT)electron packaging technology that is used inthe interconnection of wide band-gap semiconductors.This study focused on the mechanism of intermetallic compounds(IMCs)evolution in Ag/Sn TLP soldering at different temperatures.Experimental results indicated that morphologies of Ag3Sn grains mainlywere scallop-type,and some other shapes such as prism,needle,hollow column,sheet and wire of Ag3Sn grains were also observed,which was resulted from their anisotropic growths.However,the scallop-type Ag3Sn layer turned into more planar with prolongingsoldering time,due to grain coarsening and anisotropic mass flow of Ag atoms from substrate.Furthermore,a great amount ofnano-Ag3Sn particles were found on the surfaces of Ag3Sn grains,which were formed in Ag-rich areas of the molten Sn and adsorbedby the Ag3Sn grains during solidification process.Growth kinetics of the Ag3Sn IMCs in TLP soldering followed a parabolicrelationship with soldering time,and the growth rate constants of250,280and320°C were calculated as5.83×10-15m2/s,7.83×10-15m2/s and2.83×10-14m2/s,respectively.Accordingly,the activation energy of the reaction was estimated about58.89kJ/mol.展开更多
基金Supported by the Science and Technology Project of North China Sea Branch of State Oceanic Administration(No.2014B02)
文摘At present, the methods widely applied to assess ecological risk of heavy metals are essentially single-point estimates in which exposure and toxicity data cannot be fully used and probabilities of adverse biological effects cannot be achieved. In this study, based on investigation of concentrations of six heavy metals(As, Hg, Pb, Cd, Cu, and Zn) in the surface seawater and sediment near the outlet of a zinc factory, located in Huludao City, Liaoning Province, China, a tiered approach consisting of several probabilistic options was used to refi ne ecological risk assessment for the individuals. A mixture of various heavy metals was detected in the surface seawater, and potential ecological risk index(PERI) was adopted to assess the potential ecological risk of heavy metals in the surface sediment. The results from all levels of aquatic ecological risk assessment in the tiered framework, ranging from comparison of single effects and exposure values to the use of distribution-based Hazard Quotient obtained through Monte Carlo simulation, are consistent with each other. Briefl y, aquatic Zn and Cu posed a clear ecological risk, while Cd, Pb, Hg, and As in the water column posed potential risk. As expected, combined ecological risk of heavy metal mixture in the surface seawater was proved signifi cantly higher than the risk caused by any individual heavy metal, calculated using the concept of total equivalent concentration. According to PERI, the severity of pollution by the six heavy metals in the surface sediment decreased in the following sequence: Cd>Hg>As>Pb>Cu>Zn, and the total heavy metals in the sediment posed a very high risk to the marine environment. This study provides a useful mathematical framework for ecological risk assessment of heavy metals.
基金Project(51375260) supported by the National Natural Science Foundation of China
文摘Transient liquid phase(TLP)bonding is a potential high-temperature(HT)electron packaging technology that is used inthe interconnection of wide band-gap semiconductors.This study focused on the mechanism of intermetallic compounds(IMCs)evolution in Ag/Sn TLP soldering at different temperatures.Experimental results indicated that morphologies of Ag3Sn grains mainlywere scallop-type,and some other shapes such as prism,needle,hollow column,sheet and wire of Ag3Sn grains were also observed,which was resulted from their anisotropic growths.However,the scallop-type Ag3Sn layer turned into more planar with prolongingsoldering time,due to grain coarsening and anisotropic mass flow of Ag atoms from substrate.Furthermore,a great amount ofnano-Ag3Sn particles were found on the surfaces of Ag3Sn grains,which were formed in Ag-rich areas of the molten Sn and adsorbedby the Ag3Sn grains during solidification process.Growth kinetics of the Ag3Sn IMCs in TLP soldering followed a parabolicrelationship with soldering time,and the growth rate constants of250,280and320°C were calculated as5.83×10-15m2/s,7.83×10-15m2/s and2.83×10-14m2/s,respectively.Accordingly,the activation energy of the reaction was estimated about58.89kJ/mol.