[Objective] In this study,the secretion of organic acids from plant roots under soil nutrient and water stress and the effects of organic acids on ecological adaptability of plants were investigated,which provided the...[Objective] In this study,the secretion of organic acids from plant roots under soil nutrient and water stress and the effects of organic acids on ecological adaptability of plants were investigated,which provided theoretical basis for improving the adaptability of plants to a variety of stress conditions.The results showed that,under nutrient and water stress,the content of organic acids secreted from plant roots increased significantly as a common active adaptive response.Organic acids could improve the activities of a variety of antioxidant enzymes,contents of osmotic regulatory substances,contents of chlorophyll and photosynthesis levels,promote nutrient absorption and transportation in plants,and ultimately contribute to plant growth and biomass accumulation,reduce the toxicity of stress conditions to plants and improve the stress resistance and adaptability of plants.展开更多
Continuing climate changes are strongly associated with status of water, threatening the majority of ecosystems, including the grass ecosystem. The climate changes primarily affect the botanical composition of grassla...Continuing climate changes are strongly associated with status of water, threatening the majority of ecosystems, including the grass ecosystem. The climate changes primarily affect the botanical composition of grassland that is subsequently determined by production of above-ground phytomass which is used like feed for the ruminants. In our field experiment we assessed the impact of climate changes on grass ecosystem during the long-term period (23 years). We obtained a picture of the preceding development of botanical composition in this stand, due to the assumption that expected climate changes are going to disturb the botanical composition of grassland especially in the grass biome. From the obtained results follows the significant change in botanical composition in grass-herbaceous vegetation with the low share of legumes. It is not possible to confirm strict relation between precipitation during vegetation season and the share of individual botanical group. Analysis of long-term development of the botanical composition of monitored grassland influenced by different pratotechnical interventions demonstrated the significant flexibility this plant community in the times of changing climatic conditions.展开更多
基金Supported by National Natural Science Foundation of China(31370613)Major State Basic Research Development Program of China(973 Program)(2011CB403202)Fundamental Research Funds for the Central Universities(DL12CA01)~~
文摘[Objective] In this study,the secretion of organic acids from plant roots under soil nutrient and water stress and the effects of organic acids on ecological adaptability of plants were investigated,which provided theoretical basis for improving the adaptability of plants to a variety of stress conditions.The results showed that,under nutrient and water stress,the content of organic acids secreted from plant roots increased significantly as a common active adaptive response.Organic acids could improve the activities of a variety of antioxidant enzymes,contents of osmotic regulatory substances,contents of chlorophyll and photosynthesis levels,promote nutrient absorption and transportation in plants,and ultimately contribute to plant growth and biomass accumulation,reduce the toxicity of stress conditions to plants and improve the stress resistance and adaptability of plants.
文摘Continuing climate changes are strongly associated with status of water, threatening the majority of ecosystems, including the grass ecosystem. The climate changes primarily affect the botanical composition of grassland that is subsequently determined by production of above-ground phytomass which is used like feed for the ruminants. In our field experiment we assessed the impact of climate changes on grass ecosystem during the long-term period (23 years). We obtained a picture of the preceding development of botanical composition in this stand, due to the assumption that expected climate changes are going to disturb the botanical composition of grassland especially in the grass biome. From the obtained results follows the significant change in botanical composition in grass-herbaceous vegetation with the low share of legumes. It is not possible to confirm strict relation between precipitation during vegetation season and the share of individual botanical group. Analysis of long-term development of the botanical composition of monitored grassland influenced by different pratotechnical interventions demonstrated the significant flexibility this plant community in the times of changing climatic conditions.