Great progresses have been made in super hybrid rice in China. From the perspectives of dry matter production, nutrient absorption, sink and source, pho-tosynthesis, graln fiI ing and roots, the eco-physioIogical char...Great progresses have been made in super hybrid rice in China. From the perspectives of dry matter production, nutrient absorption, sink and source, pho-tosynthesis, graln fiI ing and roots, the eco-physioIogical characteristics and high-yielding cuItivation techniques of super hybrid rice in China were discussed. In addi-tion, the probIems that restricted the high and stabIe yielding of super hybrid rice were analyzed, and the deveIopment directions of high-yielding cuItivation techniques for super hybrid rice were also discussed.展开更多
The methane concentration profile from -1.5m depth in soil to 32m height in air was measured in alpine steppe lo-cated in the permafrost area. Methane concentrations showed widely variations both in air and in soil du...The methane concentration profile from -1.5m depth in soil to 32m height in air was measured in alpine steppe lo-cated in the permafrost area. Methane concentrations showed widely variations both in air and in soil during the study period. The mean concentrations in atmosphere were all higher than those in soil, and the highest methane concentration was found in air at the height of 16m with the lowest concentration occur-ring at the depth of 1.5m in soil. The variations of atmospheric methane concentrations did not show any clear pattern both temporally and spatially, although they exhibited a more steady-stable state than those in soil. During the seasonal variations, the methane concentrations at different depths in soil were sig-nificantly correlated (R2>0.6) with each other comparing to the weak correlations (R2<0.2) between the atmospheric concentra-tions at different heights. Mean methane concentrations in soil significantly decreased with depth. This was the compositive influence of the decreasing production rates and the increasing methane oxidation rates, which was caused by the descent soil moisture with depth. Although the methane concentrations at all depths varied widely during the growing season, they showed very distinct temporal variations in the non-growing season. It was indicated from the literatures that methane oxidation rates were positively correlated with soil temperature. The higher methane concentrations in soil during the winter were deter-mined by the lower methane oxidation rates with decreasing soil temperatures, whereas methane production rates had no reaction to the lower temperature. Relations between methane contribution and other environmental factors were not discussed in this paper for lacking of data, which impulse us to carry out further and more detailed studies in this unique area.展开更多
The contribution of the two particles Fock states for the production of a heavy quark in proton-pion and photon-pion collisions is studied. It is shown that the effect depends strongly on the produced heavy quark mass...The contribution of the two particles Fock states for the production of a heavy quark in proton-pion and photon-pion collisions is studied. It is shown that the effect depends strongly on the produced heavy quark mass, and the choice of the factorization scale.展开更多
Aims Variations in vegetation spring phenology are widely attributed to temperature in temperate and cold regions.However,temperature effect on phenology remains elusive in cold and arid/semiarid ecosystems because so...Aims Variations in vegetation spring phenology are widely attributed to temperature in temperate and cold regions.However,temperature effect on phenology remains elusive in cold and arid/semiarid ecosystems because soil water condition also plays an important role in mediating phenology.Methods We used growing degree day(GDD)model and growing season index(GSI)model,coupling minimum temperature(T_(min))with soil moisture(SM)to explore the influence of heat requirement and hydroclimatic interaction on the start of carbon uptake period(SCUP)and net ecosystem productivity(NEP)in two alpine meadows with different precipitation regimes on the Qinghai-Tibet Plateau(QTP).One is the water-limited alpine steppe-meadow,and the other is the temperature-limited alpine shrub-meadow.Important Findings We observed two clear patterns linking GDD and GSI to SCUP:SCUP was similarly sensitive to variations in preseason GDD and GSI in the humid alpine shrub-meadow,while SCUP was more sensitive to the variability in preseason GSI than GDD in the semiarid alpine steppe-meadow.The divergent patterns indicated a balance of the limiting climatic factors between temperature and water availability.In the humid meadow,higher temperature sensitivity of SCUP could maximize thermal benefit without drought stress,as evidenced by the stronger linear correlation coefficient(R2)and Akaike’s information criterion(AIC)between observed SCUPs and those of simulated by GDD model.However,greater water sensitivity of SCUP could maximize the benefit of water in semiarid steppe-meadow,which is indicated by the stronger R2 and AIC between observed SCUPs and those of simulated by GSI model.Additionally,although SCUPs were determined by GDD in the alpine shrub-meadow ecosystem,NEP was both controlled by accumulative GSI in two alpine meadows.Our study highlights the impacts of hydroclimatic interaction on spring carbon flux phenology and vegetation productivity in the humid and semiarid alpine ecosystems.The results also suggest that water,together with temperature should be included in the models of phenology and carbon budget for alpine ecosystems in semiarid regions.These fi ndings have important implications for improving vegetation phenology models,thus advancing our understanding of the interplay between vegetation phenology,productivity and climate change in future.展开更多
基金Supported by Hubei Provincial Key Discipline of Crop Science in Yangtze UniversityResearch Center of New Countryside’s Development of Yangtze University(2013CXJ02,2014CXJ01)National Innovation Experiment Program for University Students(104892013032)~~
文摘Great progresses have been made in super hybrid rice in China. From the perspectives of dry matter production, nutrient absorption, sink and source, pho-tosynthesis, graln fiI ing and roots, the eco-physioIogical characteristics and high-yielding cuItivation techniques of super hybrid rice in China were discussed. In addi-tion, the probIems that restricted the high and stabIe yielding of super hybrid rice were analyzed, and the deveIopment directions of high-yielding cuItivation techniques for super hybrid rice were also discussed.
基金funded by The National Basic Research Program (Grant No. G1998040800)Pre-studies project of National Basic Research Program (Grant No. 2005CCA05500)
文摘The methane concentration profile from -1.5m depth in soil to 32m height in air was measured in alpine steppe lo-cated in the permafrost area. Methane concentrations showed widely variations both in air and in soil during the study period. The mean concentrations in atmosphere were all higher than those in soil, and the highest methane concentration was found in air at the height of 16m with the lowest concentration occur-ring at the depth of 1.5m in soil. The variations of atmospheric methane concentrations did not show any clear pattern both temporally and spatially, although they exhibited a more steady-stable state than those in soil. During the seasonal variations, the methane concentrations at different depths in soil were sig-nificantly correlated (R2>0.6) with each other comparing to the weak correlations (R2<0.2) between the atmospheric concentra-tions at different heights. Mean methane concentrations in soil significantly decreased with depth. This was the compositive influence of the decreasing production rates and the increasing methane oxidation rates, which was caused by the descent soil moisture with depth. Although the methane concentrations at all depths varied widely during the growing season, they showed very distinct temporal variations in the non-growing season. It was indicated from the literatures that methane oxidation rates were positively correlated with soil temperature. The higher methane concentrations in soil during the winter were deter-mined by the lower methane oxidation rates with decreasing soil temperatures, whereas methane production rates had no reaction to the lower temperature. Relations between methane contribution and other environmental factors were not discussed in this paper for lacking of data, which impulse us to carry out further and more detailed studies in this unique area.
文摘The contribution of the two particles Fock states for the production of a heavy quark in proton-pion and photon-pion collisions is studied. It is shown that the effect depends strongly on the produced heavy quark mass, and the choice of the factorization scale.
基金supported by the National Natural Science Foundation of China(31870406,41661144045)the State Key Research and Development Program(2016YFC0502001,2017YFA0604801).
文摘Aims Variations in vegetation spring phenology are widely attributed to temperature in temperate and cold regions.However,temperature effect on phenology remains elusive in cold and arid/semiarid ecosystems because soil water condition also plays an important role in mediating phenology.Methods We used growing degree day(GDD)model and growing season index(GSI)model,coupling minimum temperature(T_(min))with soil moisture(SM)to explore the influence of heat requirement and hydroclimatic interaction on the start of carbon uptake period(SCUP)and net ecosystem productivity(NEP)in two alpine meadows with different precipitation regimes on the Qinghai-Tibet Plateau(QTP).One is the water-limited alpine steppe-meadow,and the other is the temperature-limited alpine shrub-meadow.Important Findings We observed two clear patterns linking GDD and GSI to SCUP:SCUP was similarly sensitive to variations in preseason GDD and GSI in the humid alpine shrub-meadow,while SCUP was more sensitive to the variability in preseason GSI than GDD in the semiarid alpine steppe-meadow.The divergent patterns indicated a balance of the limiting climatic factors between temperature and water availability.In the humid meadow,higher temperature sensitivity of SCUP could maximize thermal benefit without drought stress,as evidenced by the stronger linear correlation coefficient(R2)and Akaike’s information criterion(AIC)between observed SCUPs and those of simulated by GDD model.However,greater water sensitivity of SCUP could maximize the benefit of water in semiarid steppe-meadow,which is indicated by the stronger R2 and AIC between observed SCUPs and those of simulated by GSI model.Additionally,although SCUPs were determined by GDD in the alpine shrub-meadow ecosystem,NEP was both controlled by accumulative GSI in two alpine meadows.Our study highlights the impacts of hydroclimatic interaction on spring carbon flux phenology and vegetation productivity in the humid and semiarid alpine ecosystems.The results also suggest that water,together with temperature should be included in the models of phenology and carbon budget for alpine ecosystems in semiarid regions.These fi ndings have important implications for improving vegetation phenology models,thus advancing our understanding of the interplay between vegetation phenology,productivity and climate change in future.