期刊文献+
共找到607篇文章
< 1 2 31 >
每页显示 20 50 100
生成式对抗神经网络的改进及其在地震数据压噪中的应用 被引量:1
1
作者 彭海龙 李明 +4 位作者 孙文钊 李列 周凡 鲁统祥 江凡 《石油物探》 CSCD 北大核心 2024年第1期104-115,128,共13页
常规的生成式对抗神经网络在地震数据去噪过程中受模型限制,地震数据有效信息还原能力差。因此,对生成式对抗神经网络进行改进,以U-net神经网络为基础建立更深层级的生成器神经网络,优化模型的批标准化层和池化层,提升特征还原能力,搭... 常规的生成式对抗神经网络在地震数据去噪过程中受模型限制,地震数据有效信息还原能力差。因此,对生成式对抗神经网络进行改进,以U-net神经网络为基础建立更深层级的生成器神经网络,优化模型的批标准化层和池化层,提升特征还原能力,搭建多尺度判别器神经网络,提升判别器性能,提出一种包含对抗损失、配准损失和结构信息损失的多层次综合损失函数。改进后的模型结构无需预先估计噪声,能够实现端到端的盲去噪功能,神经网络泛化能力强,对数据细节的保护还原水平高。南海北部涠A地区地震数据测试结果表明,改进后的神经网络去噪能力以及对地震有效信息的保护要优于目前常见的去噪算法的结果,去噪过程对地震有效反射信息保护好,地震边界信息成像质量高。与常见的去噪方法相比,改进的生成或对抗神经网络方法在地震数据去噪中具有良好的应用效果,去噪能力强,在实际地震数据处理中具有良好的推广价值。 展开更多
关键词 生成对抗神经网络 U-net神经网络 地震数据去噪 泛化能力 数据细节
下载PDF
基于生成对抗网络和混合时空神经网络的入侵检测
2
作者 倪志伟 行鸿彦 +2 位作者 侯天浩 梁欣怡 王心怡 《电子测量技术》 北大核心 2024年第2期17-24,共8页
针对网络入侵检测领域存在检测准确率低的问题,研究异常流量样本少和分类器性能不佳时的入侵检测模型,提出一种基于改进生成对抗网络和混合时空神经网络的入侵检测模型。改进生成对抗网络通过学习异常流量样本的分布特性,生成具有特定... 针对网络入侵检测领域存在检测准确率低的问题,研究异常流量样本少和分类器性能不佳时的入侵检测模型,提出一种基于改进生成对抗网络和混合时空神经网络的入侵检测模型。改进生成对抗网络通过学习异常流量样本的分布特性,生成具有特定标签的人工异常流量样本;融合卷积神经网络和双向长短时记忆神经网络提取攻击流量的时空融合特征,利用注意力机制对时空融合特征进行加权,构建混合时空神经网络对网络流量进行分类预测。在UNSW-NB15数据集上对所提模型进行仿真实验,准确率和F1分数分别为92.93%和94.81%,表明所提模型能够有效改善原始数据集中的类别不平衡性问题,提高对异常流量样本的检测能力和网络入侵的检测准确率。 展开更多
关键词 网络入侵检测 生成对抗网络 卷积神经网络 双向长短时记忆神经网络 注意力机制
下载PDF
基于生成对抗神经网络的流量生成方法研究
3
作者 康未 李维皓 刘桐菊 《网络安全与数据治理》 2024年第6期33-41,共9页
网络仿真中的流量生成对于确保仿真效果至关重要。目前常见的网络流量生成器通常基于某种随机模型,生成的流量只能服从指定的随机分布。实际网络中的随机模型往往难以确定,导致现有模型对真实网络流量的仿真有一定的偏差。为了解决这些... 网络仿真中的流量生成对于确保仿真效果至关重要。目前常见的网络流量生成器通常基于某种随机模型,生成的流量只能服从指定的随机分布。实际网络中的随机模型往往难以确定,导致现有模型对真实网络流量的仿真有一定的偏差。为了解决这些问题,提出了基于生成对抗神经网络的时空相关流量生成模型;对网络流量数据改进了其编码方式,并使用Z-score处理流量数据,使数据趋于标准正态分布;提出了一种网络流量时空相关性的度量方法。实验结果表明,相较于现有的基线生成方式,所提出的方法在真实性和相关性的度量上平均提高了9%。 展开更多
关键词 网络仿真 网络流量生成 生成对抗神经网络 时空相关性
下载PDF
变工况下动态卷积域对抗图神经网络故障诊断
4
作者 王桐 王晨程 +2 位作者 邰宇 欧阳敏 陈立伟 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第7期1406-1414,共9页
针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结... 针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结构信息进行建模。通过分类器和域鉴别器分别建模类别标签和域标签,通过图神经网络将数据结构信息嵌入到实例图节点中,利用高斯Wasserstein距离来度量不同领域的实例图之间的差异。本文对比了不同工况下共14种迁移任务在各模型下故障识别的准确率。实验结果表明:基于动态卷积的域对抗图神经网络模型在变工况下的故障诊断效果均优于其他对比模型,且模型性能稳定。 展开更多
关键词 无监督域自适应 动态卷积 对抗 神经网络 生成 高斯Wasserstein距离 故障诊断 变工况
下载PDF
基于梯度惩罚-生成对抗神经网络的页岩三维数字岩心重构 被引量:3
5
作者 李秉科 聂昕 +3 位作者 朱林奇 王晨晨 林伟 韩登林 《西安石油大学学报(自然科学版)》 CAS 北大核心 2023年第2期53-60,共8页
数字岩心技术在油气的勘探开发中发挥着越来越重要的作用。由于传统的数字岩心重构方法存在成本高、耗时长等问题,提出使用带有梯度惩罚的生成对抗神经网络(WGAN-GP)实现页岩的三维数字岩心重构。以三组分的页岩图像为训练样本进行模型... 数字岩心技术在油气的勘探开发中发挥着越来越重要的作用。由于传统的数字岩心重构方法存在成本高、耗时长等问题,提出使用带有梯度惩罚的生成对抗神经网络(WGAN-GP)实现页岩的三维数字岩心重构。以三组分的页岩图像为训练样本进行模型的训练,得到了可以生成三维页岩图像的生成器模型,进而重构了多个三维岩心图像。将重构岩心与原始岩心进行了各种参数的对比分析,结果表明重构岩心与原始岩心具有很好的一致性,证明了本文方法的可靠性。使用WGAN-GP进行岩心重构具有岩心生成速度快、重构图像尺寸不受限制等优点,具有广泛的应用前景。 展开更多
关键词 数字岩心 页岩 三维重构 生成对抗神经网络 梯度惩罚
下载PDF
基于物理信息神经网络的牵引变流器直流支撑电容参数辨识方法
6
作者 向超群 尹雪瑶 +2 位作者 伍珣 曹忠林 刘元才 《电工技术学报》 EI CSCD 北大核心 2024年第15期4654-4667,共14页
为了解决车载牵引变流系统直流支撑电容器故障预测问题,该文提出一种基于物理信息神经网络的直流支撑电容器参数辨识方法。该方法只需要利用直流环节预充电过程的直流支撑电容器两端电压及采样频率,无需拟合曲线,无需严格对齐时间轴就... 为了解决车载牵引变流系统直流支撑电容器故障预测问题,该文提出一种基于物理信息神经网络的直流支撑电容器参数辨识方法。该方法只需要利用直流环节预充电过程的直流支撑电容器两端电压及采样频率,无需拟合曲线,无需严格对齐时间轴就可以获得较为准确的电容参数辨识结果。与此同时,为了克服在采集数据时因条件所限造成的数据量稀疏与分布不均问题,该文利用循环一致性生成对抗网络算法增强数据,使该方法可以适用于同一拓扑下宽范围电容区间的电容容值预测,降低了模型训练要求。实验结果表明:在正常条件下,该方法的辨识相对误差约在1%以下,并且降低采样频率能够缓解信噪比对该方法的影响。该方法为解决直流支撑电容参数辨识问题提供了新思路。 展开更多
关键词 直流支撑电容器 参数辨识 物理信息神经网络 循环一致性生成对抗网络 直流 环节预充电工况
下载PDF
基于深度神经网络的目标跟踪算法综述 被引量:1
7
作者 郭凡 卢铉宇 +1 位作者 李嘉怡 王红梅 《航空兵器》 CSCD 北大核心 2024年第1期1-12,共12页
目标跟踪是根据视频序列中目标的前续信息,对目标的当前状态进行预测。深度学习在目标跟踪领域逐渐广泛应用,本文阐述了目标跟踪算法和深度学习的发展背景,对传统目标跟踪进行了回顾,根据不同的网络任务功能,将基于深度学习的目标跟踪... 目标跟踪是根据视频序列中目标的前续信息,对目标的当前状态进行预测。深度学习在目标跟踪领域逐渐广泛应用,本文阐述了目标跟踪算法和深度学习的发展背景,对传统目标跟踪进行了回顾,根据不同的网络任务功能,将基于深度学习的目标跟踪算法分为:基于分类的深度学习目标跟踪算法、基于回归的深度学习目标跟踪算法、基于回归与分类结合的目标跟踪算法,并选取了具有代表性的目标跟踪算法进行实验,对比不同算法之间的特点;最后对目前基于深度学习的目标跟踪方法存在的问题进行分析,对未来发展方向进行展望。实验结果证明,深度孪生跟踪网络在精度与速度上均占优,成为当前主流的跟踪算法框架。 展开更多
关键词 目标跟踪 深度学习 神经网络 卷积神经网络 孪生神经网络 生成对抗网络
下载PDF
基于深度卷积生成对抗网络和卷积神经网络的叶片病虫害问题研究 被引量:1
8
作者 魏财根 林炜鑫 赵晨 《木工机床》 2023年第2期16-20,36,共6页
传统的机器学习和深度学习方法耗时费力、泛化性能较低且需要大量样本数据,因此需要一种能在小样本情况下准确识别植物病虫害的方法。文章利用深度卷积生成对抗网络生成大量包含叶片病虫害的合成图像数据集,结合卷积神经网络进行叶片病... 传统的机器学习和深度学习方法耗时费力、泛化性能较低且需要大量样本数据,因此需要一种能在小样本情况下准确识别植物病虫害的方法。文章利用深度卷积生成对抗网络生成大量包含叶片病虫害的合成图像数据集,结合卷积神经网络进行叶片病虫害的自动检测和识别,探讨深度卷积生成对抗网络和卷积神经网络应用于叶片病虫害问题的可行性和有效性。实验证明,该方法在小样本情况下能够准确识别叶片病虫害,具有较高的准确性和鲁棒性,为解决植物病虫害问题提供了一种新的方法。 展开更多
关键词 叶片病虫害 卷积神经网络 深度卷积生成对抗网络
下载PDF
基于空频联合卷积神经网络的GAN生成人脸检测 被引量:3
9
作者 王金伟 曾可慧 +2 位作者 张家伟 罗向阳 马宾 《计算机科学》 CSCD 北大核心 2023年第6期216-224,共9页
生成式对抗网络(GAN)的快速发展使其在图像生成领域取得了前所未有的成功。StyleGAN等新型GAN的出现使得生成的图像更真实且具有欺骗性,对国家安全、社会稳定和个人隐私都构成了较大威胁。文中提出了一种基于空频联合的双流卷积神经网... 生成式对抗网络(GAN)的快速发展使其在图像生成领域取得了前所未有的成功。StyleGAN等新型GAN的出现使得生成的图像更真实且具有欺骗性,对国家安全、社会稳定和个人隐私都构成了较大威胁。文中提出了一种基于空频联合的双流卷积神经网络的检测模型。鉴于GAN图像在生成过程中因上采样操作在频谱上留下了清晰可辨的伪影,设计了可学习的频率域滤波核以及频率域网络来充分学习并提取频率域特征。为了减弱图像变换至频域过程中丢弃部分信息而带来的影响,同样设计了空间域网络来学习图像内容本身具有差异化的空间域特征,最终将两种特征融合来实现对GAN生成人脸图像的检测。在多个数据集上的实验结果表明,所提模型在高质量生成数据集上的检测精度及在跨数据集的泛化性上都优于现有算法,且对于JPEG压缩、随机剪裁、高斯模糊等图像变换具有更强的鲁棒性。不仅如此,所提方案在GAN生成的局部人脸数据集上也有不错表现,进一步证明了所提模型有着更好的通用性以及更加广泛的应用前景。 展开更多
关键词 数字图像取证 人脸伪造检测 卷积神经网络 生成对抗网络 频率域
下载PDF
基于最大均值差异的卷积神经网络故障诊断模型
10
作者 包从望 车守全 +2 位作者 刘永志 陈俊 张彩红 《机电工程》 CAS 北大核心 2024年第3期445-454,共10页
针对工程场景中轴承故障数据采集困难,小样本下轴承故障诊断准确率较低且稳定性不高的问题,提出了一种小样本下滚动轴承故障的诊断方法,即基于最大均值差异(MMD)的卷积神经网络(CNN)诊断模型(方法)。首先,根据轴承故障机理,获取了滚动... 针对工程场景中轴承故障数据采集困难,小样本下轴承故障诊断准确率较低且稳定性不高的问题,提出了一种小样本下滚动轴承故障的诊断方法,即基于最大均值差异(MMD)的卷积神经网络(CNN)诊断模型(方法)。首先,根据轴承故障机理,获取了滚动轴承故障的仿真信号,基于生成式对抗网络构建了仿真信号与少量真实样本间的对抗训练模型,得到了伪域样本,并将其扩充为训练数据集;其次,以交叉熵损失和最大均值差异(MMD)为卷积神经网络(CNN)的优化准则,引入了缩放因子,对网络进行了动态优化,根据测试结果选取缩放因子为0.05作为最优网络结构参数,构建了故障诊断的训练模型;最后,将结构均为1024个数据点的伪域样本和真实样本共同构成模型的训练集,对其进行了归一化处理,然后将其输入到构建的网络模型中,并以MMD作为约束,进行了卷积、池化操作,以实现特征提取的目的,经反向传播对模型进行了优化,实现了诊断模型参数的迭代更新目标。研究结果表明:基于MMD的CNN诊断模型(方法)对小样本下轴承的故障诊断识别精度有明显的改善,当样本数仅为16时,识别率可达95%以上,证明该方法在小样本下的轴承故障诊断中依然能获得较高的故障识别率。 展开更多
关键词 滚动轴承 故障诊断 小样本 生成对抗网络 卷积神经网络 最大均值差异 交叉熵损失
下载PDF
神经网络在无线隐蔽通信中的应用
11
作者 于季弘 林子砚 +3 位作者 杨传敏 蔡雨庭 刘家豪 王帅 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第2期250-258,共9页
无线通信技术已经应用到社会人、机、物等多种元素中,承载着包含多种隐私数据的无线信号。无线传输信道的开放性使其安全性受到了不断的挑战,无线隐蔽通信技术在实现了通信意图安全的同时保证了信息安全和通信路径安全。该文介绍了无线... 无线通信技术已经应用到社会人、机、物等多种元素中,承载着包含多种隐私数据的无线信号。无线传输信道的开放性使其安全性受到了不断的挑战,无线隐蔽通信技术在实现了通信意图安全的同时保证了信息安全和通信路径安全。该文介绍了无线隐蔽通信系统的经典模型,并总结、归纳了传统方法下的隐蔽性能分析和隐蔽系统设计;介绍了利用对抗神经网络解决不同隐蔽通信场景下的干扰设计、中继功率分配和可重构智能表面设计等问题;以利用公开信号作为掩体的隐蔽通信场景为例,介绍了一种利用生成对抗网络生成有限长隐蔽信号的方案,并进一步给出应用该网络设计全双工接收机的干扰信号;探讨了神经网络方法在中继隐蔽通信、非正交多址接入(NOMA)下的隐蔽通信,瑞丽衰落下的隐蔽通信,干扰辅助的隐蔽通信场景下的应用前景以及进一步的研究方向。 展开更多
关键词 无线隐蔽通信 神经网络 机器学习 生成对抗网络
下载PDF
基于残差图神经网络的成矿远景区预测研究
12
作者 张鑫 薛子如 高乐 《地球科学前沿(汉斯)》 2024年第7期923-934,共12页
研究针对地球化学元素数据的成矿远景区预测问题,提出了一种基于残差图神经网络的深度学习框架。文章以广东省庞西垌研究区作为案例研究对象,针对地质数据稀缺、数据不平衡和深度学习模型构建难度等问题,文章采取了以下关键步骤:首先,... 研究针对地球化学元素数据的成矿远景区预测问题,提出了一种基于残差图神经网络的深度学习框架。文章以广东省庞西垌研究区作为案例研究对象,针对地质数据稀缺、数据不平衡和深度学习模型构建难度等问题,文章采取了以下关键步骤:首先,对地球化学元素数据进行了“去闭合化”处理,以适应后续的分析;其次,针对矿区样本不足的问题,文章引入了生成对抗网络来进行数据增强,并证明了其有效性;文章提出了一种自适应阈值的皮尔森相关系数方法,将地球化学元素数据构建为图数据;最后,文章提出一种基于残差图神经网络模型,对数据进行特征提取和分类。实验结果与传统机器学习方法和其他图神经网络方法相比,文章方法在成矿远景区预测任务中表现出显著的优势。 展开更多
关键词 神经网络 成矿远景区预测 生成对抗网络 地球化学元素
下载PDF
基于格拉姆角场与深度卷积生成对抗网络的行星齿轮箱故障诊断 被引量:2
13
作者 古莹奎 石昌武 陈家芳 《噪声与振动控制》 CSCD 北大核心 2024年第1期111-118,共8页
针对行星齿轮箱故障诊断中样本分布不均衡所引起的模型泛化能力差及诊断精度低等问题,采用格拉姆角场图像编码技术和深度卷积生成对抗网络相结合进行数据增强,融合AlexNet卷积神经网络进行故障诊断。将采集到的一维振动信号转化为格拉... 针对行星齿轮箱故障诊断中样本分布不均衡所引起的模型泛化能力差及诊断精度低等问题,采用格拉姆角场图像编码技术和深度卷积生成对抗网络相结合进行数据增强,融合AlexNet卷积神经网络进行故障诊断。将采集到的一维振动信号转化为格拉姆角场图,按比例划分训练集与测试集,将训练集样本与随机向量输入到深度卷积生成对抗网络模型中,交替训练生成器与判别器,达到纳什平衡,生成与原始样本类似的生成样本,从而实现故障样本的增广。用原始样本与生成的增广样本训练卷积神经网络分类模型,完成行星齿轮箱的故障识别。实验结果表明,所提方法能够有效提升样本不均衡条件下的行星齿轮箱故障诊断精度,使之达到99.15%,且能使收敛速度更快。 展开更多
关键词 故障诊断 格拉姆角场 深度卷积生成对抗网络 卷积神经网络 行星齿轮箱
下载PDF
基于生成对抗网络的植物景观生成设计——以花境平面图生成为例
14
作者 冯璐 余辰雯 +1 位作者 孙雨婷 赵晶 《风景园林》 北大核心 2024年第9期59-68,共10页
【目的】植物景观设计需要科学性和技术性兼备。探索人工智能,特别是生成对抗网络(generative adversarial network,GAN)在植物景观设计中的应用,能够帮助设计师提高设计过程的效率。【方法】以花境平面图生成设计为例,建立了基于细致... 【目的】植物景观设计需要科学性和技术性兼备。探索人工智能,特别是生成对抗网络(generative adversarial network,GAN)在植物景观设计中的应用,能够帮助设计师提高设计过程的效率。【方法】以花境平面图生成设计为例,建立了基于细致筛选优化的植物平面数据集。数据集标注基于植物分类,考虑了植物的种类、搭配原则及空间布局规律。引入循环生成对抗网络(cycle generative adversarial network,CycleGAN)模型对数据集进行学习,实现花境平面设计的自动生成。【结果】CycleGAN模型在以花境为代表的植物景观设计中具有独特的优势,花境平面图生成模型能够准确识别条形场地边界,并在色彩再现方面表现出较高的精度和可识别性。生成平面图的空间布局中,色块大小、平面布局形态和位置展示了各种植物的空间分布特点,并能够复现部分潜在搭配组合,生成了符合美学和生态原则的设计方案。然而,模型在部分场地边框的准确识别和设计结果的多样性方面仍存在局限。【结论】证明了CycleGAN在植物景观设计领域的应用潜力,并为实践中的植物景观设计提供了创新和有效的解决方案。 展开更多
关键词 风景园林 植物景观设计 机器学习 神经网络 循环生成对抗网络 花境
下载PDF
基于时序生成对抗网络的居民用户非侵入式负荷分解
15
作者 罗平 朱振宇 +3 位作者 樊星驰 孙博宇 张帆 吕强 《电力系统自动化》 EI CSCD 北大核心 2024年第2期71-81,共11页
现有的非侵入式负荷分解算法往往需要大量电器设备级的负荷数据才能保证分解精度,但由于用户对隐私性的考虑以及安装成本过高等问题,很难获取这些数据。因此,构建一种能深度挖掘电力负荷数据时序特性和电器相关性的时序生成对抗网络。... 现有的非侵入式负荷分解算法往往需要大量电器设备级的负荷数据才能保证分解精度,但由于用户对隐私性的考虑以及安装成本过高等问题,很难获取这些数据。因此,构建一种能深度挖掘电力负荷数据时序特性和电器相关性的时序生成对抗网络。利用降维网络对所有电器有功功率序列组成的高维向量进行降维以降低计算的复杂度,通过复原网络将结果还原为高维向量。基于电器运行状态和深度学习的非侵入式分解方法,运用卷积神经网络-双向门控循环单元构建状态复杂电器的负荷分解回归模型,对状态简单电器利用深度神经网络构建负荷识别分类模型。通过对比其他数据生成方法,以及改变典型公开数据集中生成数据比例所得的负荷分解结果验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷分解 对抗生成网络 降维网络 卷积神经网络-双向门控循环单元 深度神经网络
下载PDF
基于对抗多关系图神经网络的机器账号检测
16
作者 杨英光 李阳阳 +2 位作者 彭浩 刘弋锋 谢海永 《中文信息学报》 CSCD 北大核心 2023年第7期162-172,共11页
现有的机器账号检测方法或者依赖于对机器账号的先验知识,或者在检测时只关注单一账号的特征,忽略了与该账号有关系的其他账号所能带来的潜在表征,降低了所提检测方法的有效性。针对上述不足,该文提出了一种基于生成对抗网络的多关系图... 现有的机器账号检测方法或者依赖于对机器账号的先验知识,或者在检测时只关注单一账号的特征,忽略了与该账号有关系的其他账号所能带来的潜在表征,降低了所提检测方法的有效性。针对上述不足,该文提出了一种基于生成对抗网络的多关系图神经网络检测模型。从社交网络数据集中抽取不同关系,建立多关系图,采样节点,训练生成对抗网络,来动态改变关系图结构;将节点特征和图结构信息输入图神经网络,有选择的聚合邻居节点的特征,得到更加精确的图嵌入向量,将向量输入分类器进行检测。实验结果表明,相比于其他算法,该文所述算法在两个数据集中AUC分别最多提升了24%和9%,Recall值分别最多提升了13%和4%。 展开更多
关键词 机器账号检测 神经网络 生成对抗网络
下载PDF
基于空间特征和生成对抗网络的网络入侵检测
17
作者 张震 周一成 田鸿朋 《郑州大学学报(工学版)》 CAS 北大核心 2024年第6期40-47,共8页
针对现有的入侵检测方法未能有效考虑到数据特征之间的关联性以及在高维离散的数据集上检测精度不高等问题,提出了一种基于空间特征与生成对抗网络的网络入侵检测方法MBGAN。首先,设计了一种将数据转换成灰度图的转换方法,使得卷积核能... 针对现有的入侵检测方法未能有效考虑到数据特征之间的关联性以及在高维离散的数据集上检测精度不高等问题,提出了一种基于空间特征与生成对抗网络的网络入侵检测方法MBGAN。首先,设计了一种将数据转换成灰度图的转换方法,使得卷积核能够捕获到图像中更多的上下文空间信息流。其次,采用双向生成对抗网络模型进行异常检测,使用转换后的流量图像对模型进行训练,同时引入最小Wasserstein距离和梯度惩罚技术,解决模型训练中模式崩塌和不稳定问题。实验结果表明:所提方法在NSL-KDD、UNSW-NB15、CICIDIS2017数据集上的检测精度分别为97.4%,92.3%,94.8%,召回率分别为97.2%,93.1%,95.6%,F 1值分别为97.3%,93.0%,95.2%,效果均优于其他方法。 展开更多
关键词 入侵检测 异常检测 生成对抗网络 图像编码 卷积神经网络
下载PDF
基于生成对抗与卷积神经网络的调制识别方法 被引量:8
18
作者 邵凯 朱苗苗 王光宇 《系统工程与电子技术》 EI CSCD 北大核心 2022年第3期1036-1043,共8页
自动调制识别在频谱监测和认知无线电中占有重要地位。针对现有调制识别算法在低信噪比条件下识别率低的问题,提出一种基于生成对抗网络(generative adversarial network, GAN)和卷积神经网络(convolutional neural network, CNN)的数... 自动调制识别在频谱监测和认知无线电中占有重要地位。针对现有调制识别算法在低信噪比条件下识别率低的问题,提出一种基于生成对抗网络(generative adversarial network, GAN)和卷积神经网络(convolutional neural network, CNN)的数字信号调制识别方法。在利用平滑伪Wigner-Ville分布将调制信号转换为时频图像(time-frequency images, TFIs)后,在经典GAN中嵌入了剩余密集块(residual dense block, RDB)结构,保证了对TFIs的去噪和修复。通过对经典的剩余网络(residual network, ResNet)模型微调,满足了TFIs的识别与分类。仿真结果表明,所提方法在低信噪比情况下有效地降低了噪声对TFIs的干扰,提高了识别性能。 展开更多
关键词 自动调制识别 时频分布 卷积神经网络 生成对抗网络 剩余密集块
下载PDF
基于生成对抗网络和深度神经网络的武器系统效能评估 被引量:7
19
作者 李健 刘海滨 胡笛 《计算机应用与软件》 北大核心 2020年第2期253-258,共6页
武器系统的效能评估受很多因素的影响,神经网络是现代武器系统效能评估的重要方法,但受样本量的限制,很难达到预期的训练效果。针对这一问题,选取少批量真实数据训练生成对抗网络,待网络达到纳什均衡后,利用生成网络产生同分布的伪数据... 武器系统的效能评估受很多因素的影响,神经网络是现代武器系统效能评估的重要方法,但受样本量的限制,很难达到预期的训练效果。针对这一问题,选取少批量真实数据训练生成对抗网络,待网络达到纳什均衡后,利用生成网络产生同分布的伪数据。将伪数据与真实数据结合形成扩增样本,使用扩增样本训练深度神经网络用以评估。同时,生成对抗网络中的判别网络也能为专家评估提供一定的参考。 展开更多
关键词 武器系统 效能评估 生成对抗网络 扩增样本 深度神经网络
下载PDF
基于生成式对抗神经网络的股票预测研究 被引量:3
20
作者 严冬梅 李斌 《计算机工程与应用》 CSCD 北大核心 2022年第13期185-194,共10页
针对股票价格具有非线性、非平稳的特点,提出一种结合自注意力机制和残差网络的生成式对抗神经网络模型(SAR-GAN)。该模型的生成器(generator)由长短期记忆网络(LSTM)层、自注意力机制层、残差层等构建而成,用于生成所预测股票的价格;... 针对股票价格具有非线性、非平稳的特点,提出一种结合自注意力机制和残差网络的生成式对抗神经网络模型(SAR-GAN)。该模型的生成器(generator)由长短期记忆网络(LSTM)层、自注意力机制层、残差层等构建而成,用于生成所预测股票的价格;判别器(discriminator)用于鉴别生成的股票价格与真实的股票价格。为验证模型良好的泛化性,选取上证指数及不同股票市场的热点行业龙头股票进行预测实验。实验结果表明,与LSTM、GRU、CNN-LSTM、CNN-GRU等模型相比,SAR-GAN模型能不同程度地减少预测误差。 展开更多
关键词 股票预测 生成对抗神经网络 自注意力机制
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部