针对连续性工业生产特点,重点关注类别不平衡造成的不合格样本召回率低问题。为了从高维数据提取有效特征,结合one class F-score和最小冗余最大相关性在特征提取方面的优势,有效降低特征维度并提取有价值特征;利用Wasserstein生成对抗...针对连续性工业生产特点,重点关注类别不平衡造成的不合格样本召回率低问题。为了从高维数据提取有效特征,结合one class F-score和最小冗余最大相关性在特征提取方面的优势,有效降低特征维度并提取有价值特征;利用Wasserstein生成对抗网络(WGAN)方法扩增不合格样本数量;通过类别权重优化Focal Loss函数以提高困难样本识别率;通过轻量级梯度提升机算法结合阈值移动策略,构建基于WGAN数据增强和难例挖掘技术的质量预测模型(WGAN_Focal Loss_LGB(TM))。将所提模型应用于开源SECOM数据集,验证了所提方法的有效性。展开更多
文摘针对连续性工业生产特点,重点关注类别不平衡造成的不合格样本召回率低问题。为了从高维数据提取有效特征,结合one class F-score和最小冗余最大相关性在特征提取方面的优势,有效降低特征维度并提取有价值特征;利用Wasserstein生成对抗网络(WGAN)方法扩增不合格样本数量;通过类别权重优化Focal Loss函数以提高困难样本识别率;通过轻量级梯度提升机算法结合阈值移动策略,构建基于WGAN数据增强和难例挖掘技术的质量预测模型(WGAN_Focal Loss_LGB(TM))。将所提模型应用于开源SECOM数据集,验证了所提方法的有效性。