Nerve conduit is one of strategies for spine cord injury(SCI)treatment.Recently,studies showed that biomaterials could guide the neurite growth and promote axon regeneration at the injury site.However,the scaffold by ...Nerve conduit is one of strategies for spine cord injury(SCI)treatment.Recently,studies showed that biomaterials could guide the neurite growth and promote axon regeneration at the injury site.However,the scaffold by itself was difficult to meet the need of SCI functional recovery.The basic fibroblast growth factor(bFGF)administration significantly promotes functional recovery after organ injuries.Here,using a rat model of T9 hemisected SCI,we aimed at assessing the repair capacity of implantation of collagen scaffold(CS)modified by collagen binding bFGF(CBD-bFGF).The results showed that CS combined with CBD-bFGF treatment improved survival rates after the lateral hemisection SCI.The CS/CBD-bFGF group showed more significant improvements in motor than the simply CS-implanted and untreated control group,when evaluated by the 21-point Basso-Beattie-Bresnahan(BBB)score and footprint analysis.Both hematoxylin and eosin(H&E)and immunohistochemical staining of neurofilament(NF)and glial fibrillary acidic protein(GFAP)demonstrated that fibers were guided to grow through the implants.These findings indicated that administration of CS modified with CBD-bFGF could promote spinal cord regeneration and functional recovery.展开更多
The ability to create artificial thick tissues is a major tissue engineering problem, requiring the formation of a suitable vascular supply. In this work we examined the ability of inducing angiogenesis in a bioactive...The ability to create artificial thick tissues is a major tissue engineering problem, requiring the formation of a suitable vascular supply. In this work we examined the ability of inducing angiogenesis in a bioactive hydrogel. GYIGSRG (NH2-Gly-Tyr-Ile- Gly-Ser-Arg-Gly-COOH, GG) has been conjugated to sodium alginate (ALG) to synthesize a biological active biomaterial ALG-GG. The product was characterized by IH NMR, FT-IR and elemental analysis. A series of CaCO3/ALG-GG composite hydrogels were prepared by crosslinking ALG-GG with D-glucono-8-1actone/calcium carbonate (GDL/CaCO3) in different molar ratios. The mechanical strength and swelling ratio of the composite hydrogels were studied. The results revealed that both of them can be regulated under different preparation conditions. Then, CaCO3/ALG-GG composite hydrogel was im- planted in vivo to study the ability to induce angiogenesis. The results demonstrated that ALG-GG composited hydrogel can induce angiogenesis significantly compared with non-modified ALG group, and it may be valuable in the development of thick tissue engineering scaffold.展开更多
基金supported by National Natural Science Foundation of China(81101369,81071450)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China(to Shi Qin),Ph.D.Programs Foundation of State Education Ministry(20113201110013)+1 种基金Jiangsu Provincial Special Program of Medical Science(BL2012004,BK2011264)Jiangsu Province’s Key Provincial Talents Program(RC2011102)
文摘Nerve conduit is one of strategies for spine cord injury(SCI)treatment.Recently,studies showed that biomaterials could guide the neurite growth and promote axon regeneration at the injury site.However,the scaffold by itself was difficult to meet the need of SCI functional recovery.The basic fibroblast growth factor(bFGF)administration significantly promotes functional recovery after organ injuries.Here,using a rat model of T9 hemisected SCI,we aimed at assessing the repair capacity of implantation of collagen scaffold(CS)modified by collagen binding bFGF(CBD-bFGF).The results showed that CS combined with CBD-bFGF treatment improved survival rates after the lateral hemisection SCI.The CS/CBD-bFGF group showed more significant improvements in motor than the simply CS-implanted and untreated control group,when evaluated by the 21-point Basso-Beattie-Bresnahan(BBB)score and footprint analysis.Both hematoxylin and eosin(H&E)and immunohistochemical staining of neurofilament(NF)and glial fibrillary acidic protein(GFAP)demonstrated that fibers were guided to grow through the implants.These findings indicated that administration of CS modified with CBD-bFGF could promote spinal cord regeneration and functional recovery.
基金supported by the National Basic Research Program of China (973 Project,2011CB606202)
文摘The ability to create artificial thick tissues is a major tissue engineering problem, requiring the formation of a suitable vascular supply. In this work we examined the ability of inducing angiogenesis in a bioactive hydrogel. GYIGSRG (NH2-Gly-Tyr-Ile- Gly-Ser-Arg-Gly-COOH, GG) has been conjugated to sodium alginate (ALG) to synthesize a biological active biomaterial ALG-GG. The product was characterized by IH NMR, FT-IR and elemental analysis. A series of CaCO3/ALG-GG composite hydrogels were prepared by crosslinking ALG-GG with D-glucono-8-1actone/calcium carbonate (GDL/CaCO3) in different molar ratios. The mechanical strength and swelling ratio of the composite hydrogels were studied. The results revealed that both of them can be regulated under different preparation conditions. Then, CaCO3/ALG-GG composite hydrogel was im- planted in vivo to study the ability to induce angiogenesis. The results demonstrated that ALG-GG composited hydrogel can induce angiogenesis significantly compared with non-modified ALG group, and it may be valuable in the development of thick tissue engineering scaffold.