An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the ma...An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the main stress trajectories as the representation of force flows on a free-form surface,an automatic grid generation approach is proposed for the architectural design.The algorithm automatically plots the main stress trajectories on a 3D free-form surface,and adopts a modified advancing front meshing technique to generate the structural grid.Based on the proposed algorithm,an automatic grid generator named "St-Surmesh" is developed for the practical architectural design of free-form surface structure.The surface geometry of one of the Sun Valleys in Expo Axis for the Expo Shanghai 2010 is selected as a numerical example for validating the proposed approach.Comparative studies are performed to demonstrate how different structural grids affect the design of a free-form surface structure.展开更多
The implementation of multiple enzymes for chemical production in a cell‐free scenario is an emerging field in biomanufacturing.It enables the redesign and reconstitution of new enzymatic routes for producing chemica...The implementation of multiple enzymes for chemical production in a cell‐free scenario is an emerging field in biomanufacturing.It enables the redesign and reconstitution of new enzymatic routes for producing chemicals that may be hard to obtain from natural pathways.Although the construction of a cell‐free multienzyme system is highly flexible and adaptable,it is challenging to make all enzymatic reactions act in concert.Recently,modular construction has been conceptual‐ized as an effective way to harmonize diverse enzymatic reactions.In this review,we introduce the concept of a multienzyme module and exemplify representative modules found in Nature.We then categorize recent developments of synthetic multienzyme modules into main‐reaction modules and auxiliary modules according to their roles in reaction routes.We highlight four main‐reaction mod‐ules that can perform carbon metabolism,carbon assimilation,protein glycosylation and nonribo‐somal peptide synthesis,and exemplify auxiliary modules used for energy supply,protection and reinforcement for main reactions.The reactor‐level modularization of multienzyme catalysis is also discussed.展开更多
β-carotene ketolase and β-carotene hydroxylase encoded by bkt and bch, respectively, are key enzymes required for astaxanthin biosynthesis in Haematococcu pluvialis 34-1n. Two expression vectors containing cDNA sequ...β-carotene ketolase and β-carotene hydroxylase encoded by bkt and bch, respectively, are key enzymes required for astaxanthin biosynthesis in Haematococcu pluvialis 34-1n. Two expression vectors containing cDNA sequences of bkt and bch were constructed and co-transformed into cell-wall-deficient Chlamydomonas reinhardtii CC-849. Transgenic algae were screened on TAP agar plates containing 10 gg mL 1 Zeomycin. PCR-Southern analysis showed that bkt and bch were integrated into the genomes of C. reinhardtii. Transcripts of bkt and bch were further confirmed by RT-PCR-Southern analysis. Compared with the wild type, transgenic algae produced 29.04% and 30.27% more carotenoids and xanthophylls, respectively. Moreover, the transgenic algae could accumulate 34% more astaxanthin than wild type. These results indicate that foreign bkt and bch genes were successfully translated into β-carotene ketolase and β-carotene hydroxylase, which were responsible for catalyzing the biosynthesis of astaxanthin in transgenic algae.展开更多
基金Project(51378457)supported by the National Natural Science Foundation of China
文摘An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the main stress trajectories as the representation of force flows on a free-form surface,an automatic grid generation approach is proposed for the architectural design.The algorithm automatically plots the main stress trajectories on a 3D free-form surface,and adopts a modified advancing front meshing technique to generate the structural grid.Based on the proposed algorithm,an automatic grid generator named "St-Surmesh" is developed for the practical architectural design of free-form surface structure.The surface geometry of one of the Sun Valleys in Expo Axis for the Expo Shanghai 2010 is selected as a numerical example for validating the proposed approach.Comparative studies are performed to demonstrate how different structural grids affect the design of a free-form surface structure.
文摘The implementation of multiple enzymes for chemical production in a cell‐free scenario is an emerging field in biomanufacturing.It enables the redesign and reconstitution of new enzymatic routes for producing chemicals that may be hard to obtain from natural pathways.Although the construction of a cell‐free multienzyme system is highly flexible and adaptable,it is challenging to make all enzymatic reactions act in concert.Recently,modular construction has been conceptual‐ized as an effective way to harmonize diverse enzymatic reactions.In this review,we introduce the concept of a multienzyme module and exemplify representative modules found in Nature.We then categorize recent developments of synthetic multienzyme modules into main‐reaction modules and auxiliary modules according to their roles in reaction routes.We highlight four main‐reaction mod‐ules that can perform carbon metabolism,carbon assimilation,protein glycosylation and nonribo‐somal peptide synthesis,and exemplify auxiliary modules used for energy supply,protection and reinforcement for main reactions.The reactor‐level modularization of multienzyme catalysis is also discussed.
基金supported by the National Natural Science Foundation of China(41176106,31470389,31470431)Shenzhen Grant Plan for Science & Technology(CXB201104210005A,JCYJ20120613112512654,JSGG20130411160539208)Guangdong Enterprise Academician Workstation(2011A090700015)
文摘β-carotene ketolase and β-carotene hydroxylase encoded by bkt and bch, respectively, are key enzymes required for astaxanthin biosynthesis in Haematococcu pluvialis 34-1n. Two expression vectors containing cDNA sequences of bkt and bch were constructed and co-transformed into cell-wall-deficient Chlamydomonas reinhardtii CC-849. Transgenic algae were screened on TAP agar plates containing 10 gg mL 1 Zeomycin. PCR-Southern analysis showed that bkt and bch were integrated into the genomes of C. reinhardtii. Transcripts of bkt and bch were further confirmed by RT-PCR-Southern analysis. Compared with the wild type, transgenic algae produced 29.04% and 30.27% more carotenoids and xanthophylls, respectively. Moreover, the transgenic algae could accumulate 34% more astaxanthin than wild type. These results indicate that foreign bkt and bch genes were successfully translated into β-carotene ketolase and β-carotene hydroxylase, which were responsible for catalyzing the biosynthesis of astaxanthin in transgenic algae.