Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind sch...Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function.It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter.Numerical experiments illustrate in practice the result of convergence proved theoretically.展开更多
In this paper, the Hausdorff dimension of the intersection of self-similar fractals in Euclidean space R^n generated from an initial cube pattern with an(n-m)-dimensional hyperplane V in a fixed direction is discussed...In this paper, the Hausdorff dimension of the intersection of self-similar fractals in Euclidean space R^n generated from an initial cube pattern with an(n-m)-dimensional hyperplane V in a fixed direction is discussed. The authors give a sufficient condition which ensures that the Hausdorff dimensions of the slices of the fractal sets generated by "multirules" take the value in Marstrand's theorem, i.e., the dimension of the self-similar sets minus one. For the self-similar fractals generated with initial cube pattern, this sufficient condition also ensures that the projection measure μVis absolutely continuous with respect to the Lebesgue measure L^m. When μV《 L^m, the connection of the local dimension ofμVand the box dimension of slices is given.展开更多
基金supported by the Department of Science & Technology, Government of India under research grant SR/S4/MS:318/06.
文摘Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function.It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter.Numerical experiments illustrate in practice the result of convergence proved theoretically.
基金supported by the National Natural Science Foundation of China(Nos.11371329,11471124,11071090,11071224,11101159,11401188)K.C.Wong Magna Fund in Ningbo University,the Natural Science Foundation of Zhejiang Province(Nos.LR13A010001,LY12F02011)the Natural Science Foundation of Guangdong Province(No.S2011040005741)
文摘In this paper, the Hausdorff dimension of the intersection of self-similar fractals in Euclidean space R^n generated from an initial cube pattern with an(n-m)-dimensional hyperplane V in a fixed direction is discussed. The authors give a sufficient condition which ensures that the Hausdorff dimensions of the slices of the fractal sets generated by "multirules" take the value in Marstrand's theorem, i.e., the dimension of the self-similar sets minus one. For the self-similar fractals generated with initial cube pattern, this sufficient condition also ensures that the projection measure μVis absolutely continuous with respect to the Lebesgue measure L^m. When μV《 L^m, the connection of the local dimension ofμVand the box dimension of slices is given.