现有的客观图像质量评价方法用于GAN生成图像质量评价时,往往出现与人的主观评价不一致的情况.针对这个问题,提出了一种更符合人类视觉感知的GAN生成图像质量客观评价方法AJ-GIQA(attention and just noticeable difference based gener...现有的客观图像质量评价方法用于GAN生成图像质量评价时,往往出现与人的主观评价不一致的情况.针对这个问题,提出了一种更符合人类视觉感知的GAN生成图像质量客观评价方法AJ-GIQA(attention and just noticeable difference based generated image quality assessment).首先,模拟人类视觉系统的失真敏感度特性,对GAN生成图像进行预处理,得到其最小可觉差图;然后,将注意力模块引入特征提取网络,模拟人类视觉系统的注意力机制,获取图像的显著性特征;最后,将图像特征输入结合语义信息的质量预测网络,基于图像内容综合评价GAN生成图像的质量.在GAN生成图像数据集上的实验结果表明,AJ-GIQA的评价结果与主观平均意见得分有更高的一致性;在图像质量排序一致性上的实验结果表明,AJ-GIQA的准确率在LGIQA-LSUN-cat数据集上达到了最优,和SFA方法相比性能提高了0.267;在泛化性能上的实验结果表明,与最先进的HyperIQA方法相比,AJ-GIQA在数据集PIPAL的Pearson线性相关系数提高了0.027.展开更多
GAN生成图像质量评价是指对GAN生成的图像进行评价,判断生成图像的失真度是否影响观察者的信息获取和主观感受.目前,GAN生成图像质量评价算法较少且算法运行效率不高.该文提出一种基于近邻算法的生成图像质量评价(Near-Neighbor based G...GAN生成图像质量评价是指对GAN生成的图像进行评价,判断生成图像的失真度是否影响观察者的信息获取和主观感受.目前,GAN生成图像质量评价算法较少且算法运行效率不高.该文提出一种基于近邻算法的生成图像质量评价(Near-Neighbor based Generated Image Quality Assessment,NN-GIQA)算法,实现对GAN生成图像的自动、客观、高效评价.首先,基于ANN算法获取生成图像的近邻构成相似图像候选池,缩小生成图像对比范围;然后,基于KNN算法在相似图像候选池中获取与生成图像最相似的K个真实图像得到生成图像质量分数;最后,评价多个经典GAN模型在多个经典数据集上获取的生成图像的质量.实验结果表明本文方法有效提高了GAN生成图像质量评价的效率和准确性,运行时间仅为其他方法的1/9~1/28,其评价结果和人类主观评价结果的一致性达到80%以上,符合人类视觉感知.展开更多
文摘现有的客观图像质量评价方法用于GAN生成图像质量评价时,往往出现与人的主观评价不一致的情况.针对这个问题,提出了一种更符合人类视觉感知的GAN生成图像质量客观评价方法AJ-GIQA(attention and just noticeable difference based generated image quality assessment).首先,模拟人类视觉系统的失真敏感度特性,对GAN生成图像进行预处理,得到其最小可觉差图;然后,将注意力模块引入特征提取网络,模拟人类视觉系统的注意力机制,获取图像的显著性特征;最后,将图像特征输入结合语义信息的质量预测网络,基于图像内容综合评价GAN生成图像的质量.在GAN生成图像数据集上的实验结果表明,AJ-GIQA的评价结果与主观平均意见得分有更高的一致性;在图像质量排序一致性上的实验结果表明,AJ-GIQA的准确率在LGIQA-LSUN-cat数据集上达到了最优,和SFA方法相比性能提高了0.267;在泛化性能上的实验结果表明,与最先进的HyperIQA方法相比,AJ-GIQA在数据集PIPAL的Pearson线性相关系数提高了0.027.