With the development of image processing technology and computer, computer vision technology has been widely used in the production of agriculture,and has made many important achievements. This paper reviews its-resea...With the development of image processing technology and computer, computer vision technology has been widely used in the production of agriculture,and has made many important achievements. This paper reviews its-research progress on diagnosis of agricultural products, water diagnosis, weed identification,product quality testing and grading, agricultural picking and sorting and other as- pects, and finally put forward its existing problems and prospects for the future.展开更多
Various methods for production of polysilicon have been proposed for lowering the production cost andenergy consumption, and enhancing productivity, which are critical for industrial applications. The fluidized bed ch...Various methods for production of polysilicon have been proposed for lowering the production cost andenergy consumption, and enhancing productivity, which are critical for industrial applications. The fluidized bed chemical vapor deposition (FBCVD) method is a most promising alternative to conventional ones, but the homogeneous reaction of silane in FBCVD results in unwanted formation of fines, which will affect the product qualityand output. There are some other problems, such as heating degeneration due to undesired polysilicon deposition on the walls of the reactor and the heater. This article mainly reviews the technological development on FBCVD of polycrystalline silicon and the research status for solving the above problems. It also identifies a number of challenges to tackle and principles should be followed in the design ofa FBCVD reactor.展开更多
China is the leading importer of soybeans in the world. If China adopts high yield biotech soybean varieties, China's soybean production would increase significantly and this would impact global soybean markets. This...China is the leading importer of soybeans in the world. If China adopts high yield biotech soybean varieties, China's soybean production would increase significantly and this would impact global soybean markets. This paper assesses the possible effects of adoption of herbicide-tolerant, biotech soybeans in China and its impact on the world soybean trade. Results indicate that under a low technology fee and high adoption rate, China would be able to satisfy its soybean food demand. Urban consumers' strong preference for non-biotech soybean oil may lead to increase in imports of non-biotech soybeans.展开更多
There are many problems in terms of safe coal production and the sound developmentof the coal industry.Accompanying the intensification and increasing efficiencyof coal production and the conducting of mining operatio...There are many problems in terms of safe coal production and the sound developmentof the coal industry.Accompanying the intensification and increasing efficiencyof coal production and the conducting of mining operations at deeper and more remoteareas of mines,the efficient recovery and utilization of Coal Mine Methane:(CMM) is animportant issue in improving and stabilizing the productivity in the coal mining industry withhigh levels of gas,where the incidence of gas outbursts is increasing.We plan to studyvarious aspects of the development of production technology and characteristics of themine site.This is to establish the technology for highly efficient coproduction coal and gasoperation rate.As a result,the productivity at the coal mine face will increase due to thereduction in gas emissions in the mining face.Effective use of recovered gas can be expectedto reduce global warming by reducing the amount of coal mine methane gas emissionin the air.展开更多
Bionics (the imitation or abstraction of the "inventions" of nature) and, to an even greater extent, syn- thetic biology, will be as relevant to engineering development and industry as the silicon chip was over th...Bionics (the imitation or abstraction of the "inventions" of nature) and, to an even greater extent, syn- thetic biology, will be as relevant to engineering development and industry as the silicon chip was over the last 50 years. Chemical industries already use so-called "white biotechnology" for new processes, new raw materials, and more sustainable use of resources. Synthetic biology is also used for the devel- opment of second-generation biofuels and for harvesting the sun's energy with the help of tailor-made microorganisms or biometrically designed catalysts. The market potential for bionics in medicine, en- gineering processes, and DNA storage is huge. "Moonshot" projects are already aggressively focusing on diseases and new materials, and a US-led competition is currently underway with the aim of creating a thousand new molecules. This article describes a timeline that starts with current projects and then moves on to code engineering projects and their implications, artificial DNA, signaling molecules, and biological circuitry. Beyond these projects, one of the next frontiers in bionics is the design of synthetic metabolisms that include artificial food chains and foods, and the bioengineering of raw materials; all of which will lead to new insights into biological principles. Bioengineering will be an innovation motor just as digitalization is today. This article discusses pertinent examples of bioengineering, particularly the use of alternative carbon-based biofuels and the techniques and perils of cell modification. Big data, analytics, and massive storage are important factors in this next frontier. Although synthetic biology will be as pervasive and transformative in the next 50 years as digitization and the Intemet are today, its ap- plications and impacts are still in nascent stages. This article provides a general taxonomy in which the development of bioengineering is classified in five stages (DNA analysis, bio-circuits, minimal genomes, protocells, xenobiology) from the familiar to the unknown, with implications for safety and security, in- dustrial development, and the development of bioengineering and biotechnology as an interdisciplinary field. Ethical issues and the importance of a public debate about the consequences of bionics and syn- thetic biology are discussed.展开更多
Sparids are of considerable economic importance in marine fishery and aquaculture in China, and the species diversity of this group is considered relatively high. However, the accurate species identification and delim...Sparids are of considerable economic importance in marine fishery and aquaculture in China, and the species diversity of this group is considered relatively high. However, the accurate species identification and delimitation of sparids in China remain unaddressed. In this study, we used mitochondrial cytochrome oxidase subunit ?(COI) and 16S ribosomal RNA(16S) genes to conduct DNA barcoding and species delimitation in eleven sparid species from the coastal waters of China. Based on Kimura-2 parameter genetic distances, the mean intraspecific/interspecific variation for COI and 16S were calculated as 0.004/0.152 and 0.002/0.072, respectively. All the conspecific individuals formed monophyletic clusters in neighbour-joining trees of both markers. An obvious barcoding gap was detected for each species, and a common genetic threshold of 1.3% sequence divergence was defined for species delimitation in both markers. Although the sequence variation of 16S was generally lower than that of COI, the results indicated that sparid species could be ef fectively and accurately identified and delimited by COI as well as 16S. Thus, we propose that the COI gene serve as the standard DNA barcode for sparids, and that the 16S gene could also be an ideal candidate barcode. Moreover, each of the six sparid species( Argyrops spinifer, Rhabdosargus sarba, Dentex hypselosomus, Acanthopagrus latus, Acanthopagrus australis and Acanthopagrus berda) showed high intraspecific divergence(>1.3% genetic threshold) with the remarkable geographic lineages in the Indo-West Pacific oceans, which supported that potential unrecognized cryptic species were in them. The potential cryptic diversity revealed here might be primarily attributed to the allopatric divergences caused by the long-term geographic isolation between the Indian and West Pacific oceans or between the opposite sides of the Indian Ocean. The results further suggest that a revision of taxonomic status of these species is required, followed by development of a biodiversity conservation strategy.展开更多
Recently, increasing interest has been focused on the hydrolysis of carbohydrates to monosaccharides, among which, glucose and xylose as typical platform sugars can be used to produce chemicals and biofuels. As hetero...Recently, increasing interest has been focused on the hydrolysis of carbohydrates to monosaccharides, among which, glucose and xylose as typical platform sugars can be used to produce chemicals and biofuels. As heterogeneous catalysts, solid acids have gained extensive attention for biomass biorefinery and could replace the conventional process owing to their excellent properties, including acceptable acidity and easy separation. In particular, biochar-based solid acids derived from biomass are promising for biomass conversion owing to the low-cost of feedstocks and the simple preparation procedure. Herein, we attempt to provide a critical overview of biochar-based solid acids for hydrolysis of carbohydrates into glucose and xylose. The preparation methods and properties of biochar-based catalysts as well as the influence of their properties on catalytic performance were discussed in detail. We also highlight the major challenges facing the use of biochar-based solid acids for carbohydrate hydrolysis.展开更多
This article refers to the application of DOCO olefin-reducing catalyst developed by RIPP and manufactured by the Catalyst Factory of Changling Refining and Chemical Company in the 1.4 Mt/a RFCCU at Daqing Petrochemic...This article refers to the application of DOCO olefin-reducing catalyst developed by RIPP and manufactured by the Catalyst Factory of Changling Refining and Chemical Company in the 1.4 Mt/a RFCCU at Daqing Petrochemical Company. Results of operation over two months had revealed that this catalyst had good olefin-reducing ability and heavy oil converting ability adapted to paraffinic feedstock. The gasoline olefin yield had been reduced to 36.1 v% from 54.2 v% with gasoline RON rating decreased by 1.4 units. The induction period of gasoline had significantly increased to 952 mm, while the coke yield was increased by 0.05 percentage point with light oil yield dropping by only 0.02 percentage point. The FCC product distribution is favorable.展开更多
In accordance with the objective to construct a major province in grassland animal husbandry,the following ways were used for enhancing development,improving the scientific and technological content,increasing the sca...In accordance with the objective to construct a major province in grassland animal husbandry,the following ways were used for enhancing development,improving the scientific and technological content,increasing the scale of the industry and market development to set up our own ecological grass industry brand and finally reach sustainable development strategy.This paper discussed the status of Guizhou Province grass industry development from the grass industry resources,grassland and animal husbandry production,prataculture technology problem.展开更多
In the past several decades,SINOPEC has devoted continuously great efforts to the development of DCC technology,the only commercial process using heavy feeds aiming at propylene production.Recently,a series of researc...In the past several decades,SINOPEC has devoted continuously great efforts to the development of DCC technology,the only commercial process using heavy feeds aiming at propylene production.Recently,a series of research breakthroughs have been achieved in molecular refining.Based on the detailed analysis on the complex DCC reaction network,an innovative catalyst technology has been developed to Optimize Catalysis Kinetics (OCK in brief).The deep-cracking process can be improved with optimizing the availability of the active sites.The updated MFI and beta zeolites are used to boost the propylene selectivity.The latest generation catalyst DMMC-1 has been applied commercially.Compared with the best historical records in the past,the propylene yield upon application of the catalyst DMMC-1 increases by 2.4 m% coupled with an improved distribution of products.The DCC technology continues to assume a leading position for manufacturing propylene from heavy feedstocks.展开更多
Wild and farmed fish generally dif fer in their nutritional composition. In this study, adult wild and farmed broadhead catfish( Clarias macrocephalus Günther, 1864) were collected and were assessed for various c...Wild and farmed fish generally dif fer in their nutritional composition. In this study, adult wild and farmed broadhead catfish( Clarias macrocephalus Günther, 1864) were collected and were assessed for various characteristics, namely morphometrics, digestive indexes, and flesh quality. The morphometrics(standard length, body depth, eye width, fin height and tentacle length) and the digestive indexes(intestosomatic index, digestosomatic index, perivisceral fat index and activities of pepsin and lipase) diff ered significantly between the groups(P <0.05) and can be used to distinguish wild fish from farmed fish. In terms of protein synthesis capacity and color, the flesh quality was similar between the groups. However, radical scavenging activities and reducing power were significantly higher in the wild fish than in the farmraised group. The thermal transition characteristics of sarcoplasmic proteins, as well as myosin denaturation enthalpy and fatty acid profiles(C18:2 n6, C20:0, C22:1 n9, C24:0, Σpolyunsaturated fatty acids, and Σn–6) also exhibited potential to enable calls about the fish origin. The proximate chemical composition of whole body did not diff er between the two fish populations. Our findings suggest bioindicators, in terms of morphometrics, digestive indexes and flesh quality, that can be used to identify the origin of fish for forensic purposes, of for conservation biology of this near threatened species. The new nutritional information may be of interest to marketing, consumers, and has a connection to nutritional eff ects on human health.展开更多
With the global warming of concern,the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive because of its economic and environmental benefits.In this work,re...With the global warming of concern,the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive because of its economic and environmental benefits.In this work,recycling of automotive aluminum is reviewed to highlight environmental benefits of aluminum recycling,use of aluminum alloys in automotive applications,automotive recycling process,and new technologies in aluminum scrap process.Literature survey shows that newly developed techniques such as laser induced breakdown spectroscopy(LIBS) and solid state recycling provide promising alternatives in aluminum scrap process.Compared with conventional remelting and subsequent refinement,solid state recycling utilizing compression and extrusion at room or moderate temperature can result in significant energy savings and higher metal yield.展开更多
This paper is aiming to connect previous research in global competitiveness analysis, taking the impact of the global financial crisis into account, to evaluate how manufacturing companies are able to manage crisis by...This paper is aiming to connect previous research in global competitiveness analysis, taking the impact of the global financial crisis into account, to evaluate how manufacturing companies are able to manage crisis by adjusting their manufacturing strategy and transformational leadership together with technology level to improve their global operational competitiveness performances. Based on the previous research, we developed a theoretical approach of modeling the core factors which influence the operational competitiveness performance (i.e., manufacturing strategy and transformational leadership with technology level), into conceptual analytical models to evaluate overall competitiveness. The empirical studies are focused on manufacturing companies in China, Finland, Slovakia, Iceland, and Spain. The case companies are evaluated with the proposed analytical models and their performances are compared in global context to conclude the experience of crisis management.展开更多
Simulation technique is an efficient approach to realize the planning and scheduling of manufacturing process of products. An appropriate and efficient manufacturing process model is the basis and key of manufacturing...Simulation technique is an efficient approach to realize the planning and scheduling of manufacturing process of products. An appropriate and efficient manufacturing process model is the basis and key of manufacturing process simulation. By analyzing the features of large-sized and complex products, a method of manufacturing process modeling based on activity network is presented and a mapping algorithm of translating BOM/BOP into the manufacturing process model is designed in detail.展开更多
Based on a refined "non-competitive input-output model," this paper proposes a new framework for analyzing the status of a country's high-tech industries in the international division of labor, i.e. calculates the ...Based on a refined "non-competitive input-output model," this paper proposes a new framework for analyzing the status of a country's high-tech industries in the international division of labor, i.e. calculates the index of" weighted value-added productivity " by compiling non-competitive input-output tables which distinguish high-tech industries from traditional industries. The new method effectively avoids "statistical illusion" which stems from a biased focus on gross exports under intra-product specialization. The empirical study shows that since 1995, the status of China's high-tech industries has grown quickly as a result of enhanced labor productivity, but still lags behind those of major developed countries. In addition, the study also suggests that the status of China's high-tech industries has been over-estimated using the traditional gross export statistical method.展开更多
The world is marching into a new development period when the digital technology,physical technology,and biological technology have achieved an unprecedented development respectively in their own fields,and at the same...The world is marching into a new development period when the digital technology,physical technology,and biological technology have achieved an unprecedented development respectively in their own fields,and at the same time their applications are converging greatly.These are the three major technological drivers for the Fourth Industrial Revolution.This paper discusses the specific technology niches of each kind technological driver behind the Fourth Industrial Revolution,and then evaluates impacts of the Fourth Industrial Revolution on global industrial,economic,and social development.At last this paper proposes possible measures and policies for both firms and governments to cope with the changes brought by the Fourth Industrial Revolution.展开更多
文摘With the development of image processing technology and computer, computer vision technology has been widely used in the production of agriculture,and has made many important achievements. This paper reviews its-research progress on diagnosis of agricultural products, water diagnosis, weed identification,product quality testing and grading, agricultural picking and sorting and other as- pects, and finally put forward its existing problems and prospects for the future.
基金Supported by the Natural Science Foundation of Shandong Province of China (ZR2009BM011) and the Doctor Foundation of Shandong Province of China (BS2010NJ005).
文摘Various methods for production of polysilicon have been proposed for lowering the production cost andenergy consumption, and enhancing productivity, which are critical for industrial applications. The fluidized bed chemical vapor deposition (FBCVD) method is a most promising alternative to conventional ones, but the homogeneous reaction of silane in FBCVD results in unwanted formation of fines, which will affect the product qualityand output. There are some other problems, such as heating degeneration due to undesired polysilicon deposition on the walls of the reactor and the heater. This article mainly reviews the technological development on FBCVD of polycrystalline silicon and the research status for solving the above problems. It also identifies a number of challenges to tackle and principles should be followed in the design ofa FBCVD reactor.
文摘China is the leading importer of soybeans in the world. If China adopts high yield biotech soybean varieties, China's soybean production would increase significantly and this would impact global soybean markets. This paper assesses the possible effects of adoption of herbicide-tolerant, biotech soybeans in China and its impact on the world soybean trade. Results indicate that under a low technology fee and high adoption rate, China would be able to satisfy its soybean food demand. Urban consumers' strong preference for non-biotech soybean oil may lead to increase in imports of non-biotech soybeans.
文摘There are many problems in terms of safe coal production and the sound developmentof the coal industry.Accompanying the intensification and increasing efficiencyof coal production and the conducting of mining operations at deeper and more remoteareas of mines,the efficient recovery and utilization of Coal Mine Methane:(CMM) is animportant issue in improving and stabilizing the productivity in the coal mining industry withhigh levels of gas,where the incidence of gas outbursts is increasing.We plan to studyvarious aspects of the development of production technology and characteristics of themine site.This is to establish the technology for highly efficient coproduction coal and gasoperation rate.As a result,the productivity at the coal mine face will increase due to thereduction in gas emissions in the mining face.Effective use of recovered gas can be expectedto reduce global warming by reducing the amount of coal mine methane gas emissionin the air.
文摘Bionics (the imitation or abstraction of the "inventions" of nature) and, to an even greater extent, syn- thetic biology, will be as relevant to engineering development and industry as the silicon chip was over the last 50 years. Chemical industries already use so-called "white biotechnology" for new processes, new raw materials, and more sustainable use of resources. Synthetic biology is also used for the devel- opment of second-generation biofuels and for harvesting the sun's energy with the help of tailor-made microorganisms or biometrically designed catalysts. The market potential for bionics in medicine, en- gineering processes, and DNA storage is huge. "Moonshot" projects are already aggressively focusing on diseases and new materials, and a US-led competition is currently underway with the aim of creating a thousand new molecules. This article describes a timeline that starts with current projects and then moves on to code engineering projects and their implications, artificial DNA, signaling molecules, and biological circuitry. Beyond these projects, one of the next frontiers in bionics is the design of synthetic metabolisms that include artificial food chains and foods, and the bioengineering of raw materials; all of which will lead to new insights into biological principles. Bioengineering will be an innovation motor just as digitalization is today. This article discusses pertinent examples of bioengineering, particularly the use of alternative carbon-based biofuels and the techniques and perils of cell modification. Big data, analytics, and massive storage are important factors in this next frontier. Although synthetic biology will be as pervasive and transformative in the next 50 years as digitization and the Intemet are today, its ap- plications and impacts are still in nascent stages. This article provides a general taxonomy in which the development of bioengineering is classified in five stages (DNA analysis, bio-circuits, minimal genomes, protocells, xenobiology) from the familiar to the unknown, with implications for safety and security, in- dustrial development, and the development of bioengineering and biotechnology as an interdisciplinary field. Ethical issues and the importance of a public debate about the consequences of bionics and syn- thetic biology are discussed.
基金Supported by the National Natural Science Foundation of China(Nos.31372532,41006084,41276166)the Project for Outstanding Young Teachers in Higher Education of Guangdong,China(No.Yq2013093)
文摘Sparids are of considerable economic importance in marine fishery and aquaculture in China, and the species diversity of this group is considered relatively high. However, the accurate species identification and delimitation of sparids in China remain unaddressed. In this study, we used mitochondrial cytochrome oxidase subunit ?(COI) and 16S ribosomal RNA(16S) genes to conduct DNA barcoding and species delimitation in eleven sparid species from the coastal waters of China. Based on Kimura-2 parameter genetic distances, the mean intraspecific/interspecific variation for COI and 16S were calculated as 0.004/0.152 and 0.002/0.072, respectively. All the conspecific individuals formed monophyletic clusters in neighbour-joining trees of both markers. An obvious barcoding gap was detected for each species, and a common genetic threshold of 1.3% sequence divergence was defined for species delimitation in both markers. Although the sequence variation of 16S was generally lower than that of COI, the results indicated that sparid species could be ef fectively and accurately identified and delimited by COI as well as 16S. Thus, we propose that the COI gene serve as the standard DNA barcode for sparids, and that the 16S gene could also be an ideal candidate barcode. Moreover, each of the six sparid species( Argyrops spinifer, Rhabdosargus sarba, Dentex hypselosomus, Acanthopagrus latus, Acanthopagrus australis and Acanthopagrus berda) showed high intraspecific divergence(>1.3% genetic threshold) with the remarkable geographic lineages in the Indo-West Pacific oceans, which supported that potential unrecognized cryptic species were in them. The potential cryptic diversity revealed here might be primarily attributed to the allopatric divergences caused by the long-term geographic isolation between the Indian and West Pacific oceans or between the opposite sides of the Indian Ocean. The results further suggest that a revision of taxonomic status of these species is required, followed by development of a biodiversity conservation strategy.
基金supported by grants from the Program for National Natural Science Foundation of China(No.21576103)the Guangdong Program for Support of Top-notch Young Professionals(No.2016TQ03Z585)the Guangzhou Science and Technology Plan Project(No.201707010059)
文摘Recently, increasing interest has been focused on the hydrolysis of carbohydrates to monosaccharides, among which, glucose and xylose as typical platform sugars can be used to produce chemicals and biofuels. As heterogeneous catalysts, solid acids have gained extensive attention for biomass biorefinery and could replace the conventional process owing to their excellent properties, including acceptable acidity and easy separation. In particular, biochar-based solid acids derived from biomass are promising for biomass conversion owing to the low-cost of feedstocks and the simple preparation procedure. Herein, we attempt to provide a critical overview of biochar-based solid acids for hydrolysis of carbohydrates into glucose and xylose. The preparation methods and properties of biochar-based catalysts as well as the influence of their properties on catalytic performance were discussed in detail. We also highlight the major challenges facing the use of biochar-based solid acids for carbohydrate hydrolysis.
文摘This article refers to the application of DOCO olefin-reducing catalyst developed by RIPP and manufactured by the Catalyst Factory of Changling Refining and Chemical Company in the 1.4 Mt/a RFCCU at Daqing Petrochemical Company. Results of operation over two months had revealed that this catalyst had good olefin-reducing ability and heavy oil converting ability adapted to paraffinic feedstock. The gasoline olefin yield had been reduced to 36.1 v% from 54.2 v% with gasoline RON rating decreased by 1.4 units. The induction period of gasoline had significantly increased to 952 mm, while the coke yield was increased by 0.05 percentage point with light oil yield dropping by only 0.02 percentage point. The FCC product distribution is favorable.
文摘In accordance with the objective to construct a major province in grassland animal husbandry,the following ways were used for enhancing development,improving the scientific and technological content,increasing the scale of the industry and market development to set up our own ecological grass industry brand and finally reach sustainable development strategy.This paper discussed the status of Guizhou Province grass industry development from the grass industry resources,grassland and animal husbandry production,prataculture technology problem.
文摘In the past several decades,SINOPEC has devoted continuously great efforts to the development of DCC technology,the only commercial process using heavy feeds aiming at propylene production.Recently,a series of research breakthroughs have been achieved in molecular refining.Based on the detailed analysis on the complex DCC reaction network,an innovative catalyst technology has been developed to Optimize Catalysis Kinetics (OCK in brief).The deep-cracking process can be improved with optimizing the availability of the active sites.The updated MFI and beta zeolites are used to boost the propylene selectivity.The latest generation catalyst DMMC-1 has been applied commercially.Compared with the best historical records in the past,the propylene yield upon application of the catalyst DMMC-1 increases by 2.4 m% coupled with an improved distribution of products.The DCC technology continues to assume a leading position for manufacturing propylene from heavy feedstocks.
基金Supported by the Research Fund from the Faculty of Science(No.1-2557-02-005)the Graduate School Research Support Funding for Thesis of the Prince of Songkla University
文摘Wild and farmed fish generally dif fer in their nutritional composition. In this study, adult wild and farmed broadhead catfish( Clarias macrocephalus Günther, 1864) were collected and were assessed for various characteristics, namely morphometrics, digestive indexes, and flesh quality. The morphometrics(standard length, body depth, eye width, fin height and tentacle length) and the digestive indexes(intestosomatic index, digestosomatic index, perivisceral fat index and activities of pepsin and lipase) diff ered significantly between the groups(P <0.05) and can be used to distinguish wild fish from farmed fish. In terms of protein synthesis capacity and color, the flesh quality was similar between the groups. However, radical scavenging activities and reducing power were significantly higher in the wild fish than in the farmraised group. The thermal transition characteristics of sarcoplasmic proteins, as well as myosin denaturation enthalpy and fatty acid profiles(C18:2 n6, C20:0, C22:1 n9, C24:0, Σpolyunsaturated fatty acids, and Σn–6) also exhibited potential to enable calls about the fish origin. The proximate chemical composition of whole body did not diff er between the two fish populations. Our findings suggest bioindicators, in terms of morphometrics, digestive indexes and flesh quality, that can be used to identify the origin of fish for forensic purposes, of for conservation biology of this near threatened species. The new nutritional information may be of interest to marketing, consumers, and has a connection to nutritional eff ects on human health.
基金Project(FRINAT) supported by the Research Council of Norway (RCN)
文摘With the global warming of concern,the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive because of its economic and environmental benefits.In this work,recycling of automotive aluminum is reviewed to highlight environmental benefits of aluminum recycling,use of aluminum alloys in automotive applications,automotive recycling process,and new technologies in aluminum scrap process.Literature survey shows that newly developed techniques such as laser induced breakdown spectroscopy(LIBS) and solid state recycling provide promising alternatives in aluminum scrap process.Compared with conventional remelting and subsequent refinement,solid state recycling utilizing compression and extrusion at room or moderate temperature can result in significant energy savings and higher metal yield.
文摘This paper is aiming to connect previous research in global competitiveness analysis, taking the impact of the global financial crisis into account, to evaluate how manufacturing companies are able to manage crisis by adjusting their manufacturing strategy and transformational leadership together with technology level to improve their global operational competitiveness performances. Based on the previous research, we developed a theoretical approach of modeling the core factors which influence the operational competitiveness performance (i.e., manufacturing strategy and transformational leadership with technology level), into conceptual analytical models to evaluate overall competitiveness. The empirical studies are focused on manufacturing companies in China, Finland, Slovakia, Iceland, and Spain. The case companies are evaluated with the proposed analytical models and their performances are compared in global context to conclude the experience of crisis management.
文摘Simulation technique is an efficient approach to realize the planning and scheduling of manufacturing process of products. An appropriate and efficient manufacturing process model is the basis and key of manufacturing process simulation. By analyzing the features of large-sized and complex products, a method of manufacturing process modeling based on activity network is presented and a mapping algorithm of translating BOM/BOP into the manufacturing process model is designed in detail.
文摘Based on a refined "non-competitive input-output model," this paper proposes a new framework for analyzing the status of a country's high-tech industries in the international division of labor, i.e. calculates the index of" weighted value-added productivity " by compiling non-competitive input-output tables which distinguish high-tech industries from traditional industries. The new method effectively avoids "statistical illusion" which stems from a biased focus on gross exports under intra-product specialization. The empirical study shows that since 1995, the status of China's high-tech industries has grown quickly as a result of enhanced labor productivity, but still lags behind those of major developed countries. In addition, the study also suggests that the status of China's high-tech industries has been over-estimated using the traditional gross export statistical method.
基金Under the auspices of National Natural Science Foundation of China(No.41671120,41401125)
文摘The world is marching into a new development period when the digital technology,physical technology,and biological technology have achieved an unprecedented development respectively in their own fields,and at the same time their applications are converging greatly.These are the three major technological drivers for the Fourth Industrial Revolution.This paper discusses the specific technology niches of each kind technological driver behind the Fourth Industrial Revolution,and then evaluates impacts of the Fourth Industrial Revolution on global industrial,economic,and social development.At last this paper proposes possible measures and policies for both firms and governments to cope with the changes brought by the Fourth Industrial Revolution.