The variation in nitrogen (N) uptake by rice has been widely studied but differences in rice root morphology that may contribute to this variation are not completely understood. Field and greenhouse experiments were...The variation in nitrogen (N) uptake by rice has been widely studied but differences in rice root morphology that may contribute to this variation are not completely understood. Field and greenhouse experiments were carried out to study N accumulation, root dry weights, total root lengths, root surface areas, and root bleeding rates of two rice cultivars, Elio with low N-use efficiency and Nanguang with high N-use efficiency. Low (1 mmol N L^-1) and high (5 mmol N L^-1) N applications were established in the greenhouse experiment, and the N rates were 0, 120, and 240 kg ha^-1 in the field experiments at Jiangning and Jiangpu farms, Nanjing, China. The results showed that the N accumulation, root dry weight, total root length, and root surface area increased with an increase in N application. At the heading stage, N accumulation in the shoots and roots of Nanguang was greater than that of Elio in the field experiments and that of Elio at 5 mmol N L^-1 in the greenhouse experiment. After the heading stage, N accumulation was higher for Nanguang at both 1 and 5 mmol N L^-1 in the greenhouse experiment. The total root length and root surface area were significantly different between the two cultivars. Over the range of the fertilizer application rates, the root lengths of Nanguang at Jiangning Farm were 49%-6170 greater at booting and 26%-39% greater at heading than those of Elio, and at Jiangpu Farm they were 22%-42% and 26%-38% greater, respectively. Nanguang had a greater root bleeding rate than Elio. It was concluded that the N-use efficiency of the two rice cultivars studied depended to a great extent on the root morphological parameters and root physiological characteristics at different growth stages.展开更多
In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to...In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r -- 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system,microorganism and urease activities in the root zones were very important factors.展开更多
The objective of this study was to determine the efficiency of biological nitrogen fixation (BNF) of local Bradyrhizobium isolates in soil of various fertility levels using 15N dilution technique. Local isolates wer...The objective of this study was to determine the efficiency of biological nitrogen fixation (BNF) of local Bradyrhizobium isolates in soil of various fertility levels using 15N dilution technique. Local isolates were obtained from cowpea rhizosphere in fields of different Iraqi provinces. Six isolates were selected in this study, which was conducted as a pot experiment under greenhouse conditions. Effects of the following fertility levels were evaluated: at F1, 0 mg N, P and K was added; at F2, 25 mg N/kg soil, 10 mg P/kg soil and 25 mg K/kg soil were added, respectively; the other two levels were F3 at which 50, 20 and 50 mg/kg soil and at F4 75, 30 and 75 mg/kg soil for N, P and K, respectively, were added. Urea, labeled with 15N 10% access atom (aa), was used as a source of N. The highest BNF was observed under the lowest fertility level, i.e., F1. BNF across all isolates was markedly decreased with the increase of nutrient application to soil, being totally eliminated at the highest fertility level F4. Numbers of nodules per plant root of all isolates were the least under the zero nutrients application and the highest nodules number were found under the highest levels of N, P and K application. Number of nodules does not necessarily reflect the best BNF efficiency of all isolates. However, fertility levels were of significant effect on average nodule number of all isolates. The lowest plant dry weight was under the first fertility level F1 irrelevant of Rhizobium isolates. In general, the highest plant dry weight was under the second soil fertility level F2.展开更多
The vast majority of herbaceous plants engage into arbuscular mycorrhizal (AM) symbioses and consideration of their mycorrhizal status should be embodied in studies of plant-microbe interactions. To establish reliable...The vast majority of herbaceous plants engage into arbuscular mycorrhizal (AM) symbioses and consideration of their mycorrhizal status should be embodied in studies of plant-microbe interactions. To establish reliable AM contrasts, however, a sterilized re-inoculation procedure is commonly adopted. It was questioned whether the specific approach is sufficient for the studies targeting the bacterial domain, specifically nitrifiers, a group of autotrophic, slow growing microbes. In a controlled experiment mycorrhizal and non-mycorrhizal Plantago lanceolata were grown up in compartmentalized pots to study the AM effect on nitrification rates in the plant rhizosphere. Nitrification rates were assayed following an extensive 3-week bacterial equilibration step of the re-inoculated soil and a 13-week plant growth period in a controlled environment. Under these specific conditions, the nitrification potential levels at harvest were exceptionally low, and actual nitrification rates of the root compartment of non-mycorrhizal P. lanceolata were significantly lower than those of any other compartment. It is then argued that the specific effects should be attributed to the alleged higher growth rates of non-mycorrhizal plants that are known to occur early in the AM experiment. It is concluded that the specific experimental approach is not suitable for the study of microbes with slow growth rates.展开更多
Dark septate endophytic (DSE) fungi are ubiquitous and cosmopolitan, and occur widely in association with plants in heavy metal stress environment. However, little is known about the effect of inoculation with DSE f...Dark septate endophytic (DSE) fungi are ubiquitous and cosmopolitan, and occur widely in association with plants in heavy metal stress environment. However, little is known about the effect of inoculation with DSE fungi on the host plant under heavy metal stress. In this study, Gaeumannomyces cylindrosporus, which was isolated from Pb-Zn mine railings in China and had been proven to have high Pb tolerance, was inoculated onto the roots of maize (Zea mays L.) seedlings to study the effect of DSE on plant growth, photosynthesis, and the translocation and accumulation of Pb in plant under stress of different Pb concentrations. The growth indicators (height, basal diameter, root length, and biomass) of maize were detected. Chlorophyll content, photosynthetic characteristics (net photosynthetic rate, transpiration rate, stomatal conductance, and intercellular CO2 concentration), and chlorophyll fluorescence parameters in leaves of the inoculated and non-inoculated maize were also determined. Inoculation with G. cylindrosporus significantly increased height, basal diameter, root length, and biomass of maize seedlings under Pb stress. Colonization of G. cylindrosporus improved the efficiency of photosynthesis and altered the translocation and accumulation of Pb in the plants. Although inoculation with G. cylindrosporus increased Pb accumulation in host plants in comparison to non-inoculated plants, the translocation factor of Pb in plant body was significantly decreased. The results indicated that Pb was accumulated mainly in the root system of maize and the phytotoxicity of Pb to the aerial part of the plant was alleviated. The improvement of efficiency of photosynthesis and the decrease of translocation factor of Pb, caused by DSE fungal colonization, were efficient strategies to improve Pb tolerance of host plants.展开更多
Many recently developed N management strategies have been extremely successful in improving N use efficiency. How- ever, attempts to further increase grain yields have had limited success. Field experiments were condu...Many recently developed N management strategies have been extremely successful in improving N use efficiency. How- ever, attempts to further increase grain yields have had limited success. Field experiments were conducted in 2007 and 2008 at four sites to evaluate the effect of an in-season root-zone N management strategy on maize (Zea mays L.). According to the in-season root-zone N management, the optimal N rate (ONR) was determined by subtracting measured soil mineral N (NHa+-N and NO3-N) in the root zone from N target values. Other treatments included a control without N fertilization, 70% of ONR~ 130% of ONR, and recommended N rate (RNR) by agronomists in China that have been shown to approach maize yield potentials. Although apparent N recovery for the ONR treatment was significantly higher than that under RNR in 2007, grain yield declined from 13.3 to 11.0 Mg ha-1 because of an underestimation of N uptake. In 2008, N target values were adjusted to match crop uptake, and N fertilization rates were reduced from 450 kg N ha-1 for RNR to 225 to 265 kg N ha 1 for ONR. High maize yields were maintained at 12.6 to 13.5 Mg ha 1 which were twice the yield from typical farmers' practice. As a result, apparent N recovery increased from 29% to 66%, and estimated N losses decreased significantly for the ONR treatment compared to the RNR treatment. In conclusion, the in-season root-zone N management approach was able to achieve high yields, high NUE and low N losses.展开更多
基金Supported by the National Key Basic Research Program (973 Program) of China (No.2007CB109304)the NationalNatural Science Foundation of China (Nos.30771290 and 30671234)
文摘The variation in nitrogen (N) uptake by rice has been widely studied but differences in rice root morphology that may contribute to this variation are not completely understood. Field and greenhouse experiments were carried out to study N accumulation, root dry weights, total root lengths, root surface areas, and root bleeding rates of two rice cultivars, Elio with low N-use efficiency and Nanguang with high N-use efficiency. Low (1 mmol N L^-1) and high (5 mmol N L^-1) N applications were established in the greenhouse experiment, and the N rates were 0, 120, and 240 kg ha^-1 in the field experiments at Jiangning and Jiangpu farms, Nanjing, China. The results showed that the N accumulation, root dry weight, total root length, and root surface area increased with an increase in N application. At the heading stage, N accumulation in the shoots and roots of Nanguang was greater than that of Elio in the field experiments and that of Elio at 5 mmol N L^-1 in the greenhouse experiment. After the heading stage, N accumulation was higher for Nanguang at both 1 and 5 mmol N L^-1 in the greenhouse experiment. The total root length and root surface area were significantly different between the two cultivars. Over the range of the fertilizer application rates, the root lengths of Nanguang at Jiangning Farm were 49%-6170 greater at booting and 26%-39% greater at heading than those of Elio, and at Jiangpu Farm they were 22%-42% and 26%-38% greater, respectively. Nanguang had a greater root bleeding rate than Elio. It was concluded that the N-use efficiency of the two rice cultivars studied depended to a great extent on the root morphological parameters and root physiological characteristics at different growth stages.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (No. 39925007)the Biotechnology section of INCO-DC under the 4th Framework Program of the European Commission(No. ERBIC18CT960059).
文摘In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r -- 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system,microorganism and urease activities in the root zones were very important factors.
文摘The objective of this study was to determine the efficiency of biological nitrogen fixation (BNF) of local Bradyrhizobium isolates in soil of various fertility levels using 15N dilution technique. Local isolates were obtained from cowpea rhizosphere in fields of different Iraqi provinces. Six isolates were selected in this study, which was conducted as a pot experiment under greenhouse conditions. Effects of the following fertility levels were evaluated: at F1, 0 mg N, P and K was added; at F2, 25 mg N/kg soil, 10 mg P/kg soil and 25 mg K/kg soil were added, respectively; the other two levels were F3 at which 50, 20 and 50 mg/kg soil and at F4 75, 30 and 75 mg/kg soil for N, P and K, respectively, were added. Urea, labeled with 15N 10% access atom (aa), was used as a source of N. The highest BNF was observed under the lowest fertility level, i.e., F1. BNF across all isolates was markedly decreased with the increase of nutrient application to soil, being totally eliminated at the highest fertility level F4. Numbers of nodules per plant root of all isolates were the least under the zero nutrients application and the highest nodules number were found under the highest levels of N, P and K application. Number of nodules does not necessarily reflect the best BNF efficiency of all isolates. However, fertility levels were of significant effect on average nodule number of all isolates. The lowest plant dry weight was under the first fertility level F1 irrelevant of Rhizobium isolates. In general, the highest plant dry weight was under the second soil fertility level F2.
基金Supported by a PhD fellowship from the Chloros trust
文摘The vast majority of herbaceous plants engage into arbuscular mycorrhizal (AM) symbioses and consideration of their mycorrhizal status should be embodied in studies of plant-microbe interactions. To establish reliable AM contrasts, however, a sterilized re-inoculation procedure is commonly adopted. It was questioned whether the specific approach is sufficient for the studies targeting the bacterial domain, specifically nitrifiers, a group of autotrophic, slow growing microbes. In a controlled experiment mycorrhizal and non-mycorrhizal Plantago lanceolata were grown up in compartmentalized pots to study the AM effect on nitrification rates in the plant rhizosphere. Nitrification rates were assayed following an extensive 3-week bacterial equilibration step of the re-inoculated soil and a 13-week plant growth period in a controlled environment. Under these specific conditions, the nitrification potential levels at harvest were exceptionally low, and actual nitrification rates of the root compartment of non-mycorrhizal P. lanceolata were significantly lower than those of any other compartment. It is then argued that the specific effects should be attributed to the alleged higher growth rates of non-mycorrhizal plants that are known to occur early in the AM experiment. It is concluded that the specific experimental approach is not suitable for the study of microbes with slow growth rates.
基金supported by the National Natural Science Foundation of China (Nos. 41671268, 31270639, and 31400435)the Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT1035)+1 种基金the Hubei Provincial Natural Science Foundation of China (No. 2015CFB596)the Shaanxi Provincial Science and Technology Innovation Project Plan of China (No. 2016KTCL02-07)
文摘Dark septate endophytic (DSE) fungi are ubiquitous and cosmopolitan, and occur widely in association with plants in heavy metal stress environment. However, little is known about the effect of inoculation with DSE fungi on the host plant under heavy metal stress. In this study, Gaeumannomyces cylindrosporus, which was isolated from Pb-Zn mine railings in China and had been proven to have high Pb tolerance, was inoculated onto the roots of maize (Zea mays L.) seedlings to study the effect of DSE on plant growth, photosynthesis, and the translocation and accumulation of Pb in plant under stress of different Pb concentrations. The growth indicators (height, basal diameter, root length, and biomass) of maize were detected. Chlorophyll content, photosynthetic characteristics (net photosynthetic rate, transpiration rate, stomatal conductance, and intercellular CO2 concentration), and chlorophyll fluorescence parameters in leaves of the inoculated and non-inoculated maize were also determined. Inoculation with G. cylindrosporus significantly increased height, basal diameter, root length, and biomass of maize seedlings under Pb stress. Colonization of G. cylindrosporus improved the efficiency of photosynthesis and altered the translocation and accumulation of Pb in the plants. Although inoculation with G. cylindrosporus increased Pb accumulation in host plants in comparison to non-inoculated plants, the translocation factor of Pb in plant body was significantly decreased. The results indicated that Pb was accumulated mainly in the root system of maize and the phytotoxicity of Pb to the aerial part of the plant was alleviated. The improvement of efficiency of photosynthesis and the decrease of translocation factor of Pb, caused by DSE fungal colonization, were efficient strategies to improve Pb tolerance of host plants.
基金Supported by the National Basic Research Program (973 Program) of China (No. 2009CB118606)the Special Fund for Agriculture Profession of China (No. 200803030)the National Key Technologies Research and Development Program of China during the 11th Five-Year Plan Period (No. 2006BAD25B02)
文摘Many recently developed N management strategies have been extremely successful in improving N use efficiency. How- ever, attempts to further increase grain yields have had limited success. Field experiments were conducted in 2007 and 2008 at four sites to evaluate the effect of an in-season root-zone N management strategy on maize (Zea mays L.). According to the in-season root-zone N management, the optimal N rate (ONR) was determined by subtracting measured soil mineral N (NHa+-N and NO3-N) in the root zone from N target values. Other treatments included a control without N fertilization, 70% of ONR~ 130% of ONR, and recommended N rate (RNR) by agronomists in China that have been shown to approach maize yield potentials. Although apparent N recovery for the ONR treatment was significantly higher than that under RNR in 2007, grain yield declined from 13.3 to 11.0 Mg ha-1 because of an underestimation of N uptake. In 2008, N target values were adjusted to match crop uptake, and N fertilization rates were reduced from 450 kg N ha-1 for RNR to 225 to 265 kg N ha 1 for ONR. High maize yields were maintained at 12.6 to 13.5 Mg ha 1 which were twice the yield from typical farmers' practice. As a result, apparent N recovery increased from 29% to 66%, and estimated N losses decreased significantly for the ONR treatment compared to the RNR treatment. In conclusion, the in-season root-zone N management approach was able to achieve high yields, high NUE and low N losses.