China has abundant solar energy resource. Solar thermal collectors, particularly all-glass evacuated tubular collectors, have been studied and developed for 30 years, and solar thermal industry has developed rapidly f...China has abundant solar energy resource. Solar thermal collectors, particularly all-glass evacuated tubular collectors, have been studied and developed for 30 years, and solar thermal industry has developed rapidly for 15 years. There are various solar thermal systems, with an operation area of around 108 million m2 in 2007. These systems mainly provide domestic hot water, but some other applications are under extensive study and development as well.展开更多
Ultrafiltration is a new practical technique of a chemical process, its development prospect is very broad, so it is a very wide application in chemical process, this paper combined with ultrafiltration technique in a...Ultrafiltration is a new practical technique of a chemical process, its development prospect is very broad, so it is a very wide application in chemical process, this paper combined with ultrafiltration technique in a ultrafiltration company, the ultrafiltration technique should be used to analyzes and discusses in ultrafiltration process. Finally, the article gives the process of ultrafiltration technology in city living water, ultrafiltration technology has the advantages of simple process, convenient operation, low energy consumption, good removal effect of phosphorus in chemical enhanced ultrafiltration micelle research field.展开更多
Phospholipase is an enzyme that hydrolyzes phospholipids releasing a variety of products, like for example lyso-phospholipids, free fatty acids, di-acylglycerols, choline phosphate and phosphatidates, depending on the...Phospholipase is an enzyme that hydrolyzes phospholipids releasing a variety of products, like for example lyso-phospholipids, free fatty acids, di-acylglycerols, choline phosphate and phosphatidates, depending on the site of hydrolysis. In cheese production, lysophospholipids act as surface-active agents in the cheese curd, helping emulsification of water and fat during processing and reducing syneresis. Phospholipases are more specific and have little or no activity toward di- or triglycerides. As a result of phospholipid hydrolysis, flavor defects do not occur due to the main formation of palmitic, oleic, and stearic acids, which are non-volatile short chains fatty acids. According to the scientific studies the use of phospholipase is able to increase the yield of cheese and reduce the environmental impacts of cheese production. Protein and fat largely determine cheese yield. Depending on the milk composition, 75% to 78% of milk protein and 85% to 95% of milk fat are entrapped in the cheese curd. The remaining protein and fat are lost in the whey and, to a lesser extent, in the brine. Crucially in the production of pasta filata cheese fat losses occur in the hot stretching step, where the fresh curd is molded and stretched in hot water. The lysophospholipid-casein complexes should be studied to understand the mechanism leading to cheese yield improvements.展开更多
Proteins possess many biological functions.However, they can easily degrade or aggregate, thus losing their bioactivity. Therefore, it is very important to develop materials capable of interacting with proteins and fo...Proteins possess many biological functions.However, they can easily degrade or aggregate, thus losing their bioactivity. Therefore, it is very important to develop materials capable of interacting with proteins and forming nanostructures for protein storage and delivery. In this study,we serendipitously found a novel peptide-based supramolecular protein glue(Nap-GFFYK(γE)2-NH2, compound 1) that could co-assemble with proteins into nanofibers and hydrogels. We found that compound 1 rapidly folded into a β-sheet conformation upon contact with many proteins but not with polymers. Total internal reflection fluorescence microscopy(TIRFM) images clearly show the formation of co-assembled nanofibers by proteins and the peptide. The supramolecular protein glue could improve the dispersion of enzymes(lipase and lysozyme) and therefore enhance their catalytic activity,especially at high temperatures. More importantly, the supramolecular protein glue could co-assemble with two enzymes, glucose oxidase/horseradish peroxidase(GOx/HRP)and GOx/cytochrome c(cyt c), to form nanofibers that significantly enhanced the catalytic activity of tandem enzymatic reactions. We envisioned the great potential of our supramolecular protein glue for protein storage, delivery, and bioactivity manipulation.展开更多
文摘China has abundant solar energy resource. Solar thermal collectors, particularly all-glass evacuated tubular collectors, have been studied and developed for 30 years, and solar thermal industry has developed rapidly for 15 years. There are various solar thermal systems, with an operation area of around 108 million m2 in 2007. These systems mainly provide domestic hot water, but some other applications are under extensive study and development as well.
文摘Ultrafiltration is a new practical technique of a chemical process, its development prospect is very broad, so it is a very wide application in chemical process, this paper combined with ultrafiltration technique in a ultrafiltration company, the ultrafiltration technique should be used to analyzes and discusses in ultrafiltration process. Finally, the article gives the process of ultrafiltration technology in city living water, ultrafiltration technology has the advantages of simple process, convenient operation, low energy consumption, good removal effect of phosphorus in chemical enhanced ultrafiltration micelle research field.
文摘Phospholipase is an enzyme that hydrolyzes phospholipids releasing a variety of products, like for example lyso-phospholipids, free fatty acids, di-acylglycerols, choline phosphate and phosphatidates, depending on the site of hydrolysis. In cheese production, lysophospholipids act as surface-active agents in the cheese curd, helping emulsification of water and fat during processing and reducing syneresis. Phospholipases are more specific and have little or no activity toward di- or triglycerides. As a result of phospholipid hydrolysis, flavor defects do not occur due to the main formation of palmitic, oleic, and stearic acids, which are non-volatile short chains fatty acids. According to the scientific studies the use of phospholipase is able to increase the yield of cheese and reduce the environmental impacts of cheese production. Protein and fat largely determine cheese yield. Depending on the milk composition, 75% to 78% of milk protein and 85% to 95% of milk fat are entrapped in the cheese curd. The remaining protein and fat are lost in the whey and, to a lesser extent, in the brine. Crucially in the production of pasta filata cheese fat losses occur in the hot stretching step, where the fresh curd is molded and stretched in hot water. The lysophospholipid-casein complexes should be studied to understand the mechanism leading to cheese yield improvements.
基金supported by the National Science Fund for Distinguished Young Scholars(31825012)the National Key Research and Development Program of China(2017YFC1103502)+4 种基金the National Natural Science Foundation of China(NSFC,51773097,51873156 and 21876116)Tianjin Science Fund for Distinguished Young Scholars(17JCJQJC44900)the National Program for Support of Topnotch Young Professionalsthe Fundamental Research Funds for the Central Universitiesthe Young Elite Scientists Sponsorship Program by Tianjin(TJSQNTJ-2017-16)
文摘Proteins possess many biological functions.However, they can easily degrade or aggregate, thus losing their bioactivity. Therefore, it is very important to develop materials capable of interacting with proteins and forming nanostructures for protein storage and delivery. In this study,we serendipitously found a novel peptide-based supramolecular protein glue(Nap-GFFYK(γE)2-NH2, compound 1) that could co-assemble with proteins into nanofibers and hydrogels. We found that compound 1 rapidly folded into a β-sheet conformation upon contact with many proteins but not with polymers. Total internal reflection fluorescence microscopy(TIRFM) images clearly show the formation of co-assembled nanofibers by proteins and the peptide. The supramolecular protein glue could improve the dispersion of enzymes(lipase and lysozyme) and therefore enhance their catalytic activity,especially at high temperatures. More importantly, the supramolecular protein glue could co-assemble with two enzymes, glucose oxidase/horseradish peroxidase(GOx/HRP)and GOx/cytochrome c(cyt c), to form nanofibers that significantly enhanced the catalytic activity of tandem enzymatic reactions. We envisioned the great potential of our supramolecular protein glue for protein storage, delivery, and bioactivity manipulation.