期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于机器阅读理解的生活情景常识预测
1
作者
邓鉴格
刘宝锴
徐涛
《人工智能与机器人研究》
2022年第2期114-121,共8页
机器学习研究的长期目标是产生适用于推理和自然语言的方法,建立智能对话系统。本实验通过回答日常生活的事件的问答问题来评估阅读理解,使用Facebook AI的BABI tasks中的四种类型数据完成模型训练,采用数字编码稀疏交叉熵损失函数对RN...
机器学习研究的长期目标是产生适用于推理和自然语言的方法,建立智能对话系统。本实验通过回答日常生活的事件的问答问题来评估阅读理解,使用Facebook AI的BABI tasks中的四种类型数据完成模型训练,采用数字编码稀疏交叉熵损失函数对RNN模型、LSTM模型和BERT模型参数进行设置,采用多分类单标签的categorical_accuracy函数作为评价度量,预测样本数据集中的正确数量。实验结果表明,在RNN模型预测答案的准确率明显高于LSTM和BERT模型。
展开更多
关键词
机器学习
RNN
LSTM
BERT
生活情境常识
下载PDF
职称材料
题名
基于机器阅读理解的生活情景常识预测
1
作者
邓鉴格
刘宝锴
徐涛
机构
西北民族大学
出处
《人工智能与机器人研究》
2022年第2期114-121,共8页
文摘
机器学习研究的长期目标是产生适用于推理和自然语言的方法,建立智能对话系统。本实验通过回答日常生活的事件的问答问题来评估阅读理解,使用Facebook AI的BABI tasks中的四种类型数据完成模型训练,采用数字编码稀疏交叉熵损失函数对RNN模型、LSTM模型和BERT模型参数进行设置,采用多分类单标签的categorical_accuracy函数作为评价度量,预测样本数据集中的正确数量。实验结果表明,在RNN模型预测答案的准确率明显高于LSTM和BERT模型。
关键词
机器学习
RNN
LSTM
BERT
生活情境常识
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于机器阅读理解的生活情景常识预测
邓鉴格
刘宝锴
徐涛
《人工智能与机器人研究》
2022
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部