Objective: This study aimed to establish chemiluminescent immunoassay (CLIA) for quantitative determination of theophylline levels in human serum. Methods: To measure the concentration of theophylline (n=122) and eval...Objective: This study aimed to establish chemiluminescent immunoassay (CLIA) for quantitative determination of theophylline levels in human serum. Methods: To measure the concentration of theophylline (n=122) and evaluate the assay.Results: The linear range of the CLIA method was 0.51~40 mg/L (Y=1.02X+0.44, r=0.995). The intra and inter CV (coefficient variance) of CLIA were 3.20% and 3.57%, respectively. The average recovery rate was 102.3%. This method was free from interference by brilirubin (<200 μmol/L), hemoglobin (<10 g/L), and triglycerides (<15 mmol/L). Conclusion: This method is simple, convenient and precise for clinical pharmacokinetics study oftheophylline.展开更多
The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleachingby mixed thermophilic Archaea culture(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaens...The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleachingby mixed thermophilic Archaea culture(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaensis and Sulfolobusmetallicus)at65°C was studied.Leaching experiments showed that the addition of activated carbon could significantly promote thedissolution of chalcopyrite for both bioleaching and chemical leaching.The results of synchrotron-based X-ray diffraction,ironL-edge and sulfur K-edge X-ray absorption near edge structure spectroscopy indicated that activated carbon could change thetransition path of electrons through galvanic interactions to form more readily dissolved secondary mineral chalcocite at a low redoxpotential(?400mV)and then enhanced the copper dissolution.Jarosite accumulated immediately in the initial stage of bioleachingwith activated carbon but copper dissolution was not hindered.However,much jarosite precipitated on the surface of chalcopyrite inthe late stage of bioleaching,which might account for the decrease of copper dissolution rate.More elemental sulfur(S0)was alsodetected with additional activated carbon but the mixed thermophilic Archaea culture had a great sulfur oxidation activity,thus S0waseliminated and seemed to have no significant influence on the dissolution of chalcopyrite.展开更多
文摘Objective: This study aimed to establish chemiluminescent immunoassay (CLIA) for quantitative determination of theophylline levels in human serum. Methods: To measure the concentration of theophylline (n=122) and evaluate the assay.Results: The linear range of the CLIA method was 0.51~40 mg/L (Y=1.02X+0.44, r=0.995). The intra and inter CV (coefficient variance) of CLIA were 3.20% and 3.57%, respectively. The average recovery rate was 102.3%. This method was free from interference by brilirubin (<200 μmol/L), hemoglobin (<10 g/L), and triglycerides (<15 mmol/L). Conclusion: This method is simple, convenient and precise for clinical pharmacokinetics study oftheophylline.
基金Project(51274257) supported by the National Natural Science Foundation of ChinaProject(U1232103) supported by the Joint Funds of National Natural Science Foundation of China and Large Scientific Facility Foundation of Chinese Academy of Sciences+1 种基金Project(VR-12419) supported by the Beijing Synchrotron Radiation Facility Public User Program,ChinaProject(15ssrf00924) supported by the Shanghai Institute of Applied Physics Open Fund of Shanghai Synchrotron Radiation Facility,China
文摘The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleachingby mixed thermophilic Archaea culture(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaensis and Sulfolobusmetallicus)at65°C was studied.Leaching experiments showed that the addition of activated carbon could significantly promote thedissolution of chalcopyrite for both bioleaching and chemical leaching.The results of synchrotron-based X-ray diffraction,ironL-edge and sulfur K-edge X-ray absorption near edge structure spectroscopy indicated that activated carbon could change thetransition path of electrons through galvanic interactions to form more readily dissolved secondary mineral chalcocite at a low redoxpotential(?400mV)and then enhanced the copper dissolution.Jarosite accumulated immediately in the initial stage of bioleachingwith activated carbon but copper dissolution was not hindered.However,much jarosite precipitated on the surface of chalcopyrite inthe late stage of bioleaching,which might account for the decrease of copper dissolution rate.More elemental sulfur(S0)was alsodetected with additional activated carbon but the mixed thermophilic Archaea culture had a great sulfur oxidation activity,thus S0waseliminated and seemed to have no significant influence on the dissolution of chalcopyrite.