The first available label standardizing a zero-balanced type of building is the Swiss Standard Minergie-A. The standard prescribes an annual net zero primary energy balance for heating, domestic hot water and ventilat...The first available label standardizing a zero-balanced type of building is the Swiss Standard Minergie-A. The standard prescribes an annual net zero primary energy balance for heating, domestic hot water and ventilation. Electricity consumption for appliances and lighting is excluded. Additionally, Minergie-A is the first standard worldwide which includes a requirement in regard to embodied energy. Based on an analysis of 39 Minergie-A buildings, this paper shows that a wide range of different energy concepts and embodied energy strategies are possible in the scope of the label. The basis of all Minergie-A buildings is a well-insulated building envelope. However, the step from the Swiss Standard Minergie-A to a Net ZEB (net zero energy building) standard which includes electricity consumption for appliances and lighting is not a very big one. Increasing the size of the photovoltaic system is sufficient in most cases. Anyway, some of the Minergie-A buildings evaluated are also Net ZEBs. In this paper, it is also shown that the net zero balance during the operational phase of Net ZEBs clearly outweighs the increased embodied energy for additional materials in a life cycle energy analysis.展开更多
文摘The first available label standardizing a zero-balanced type of building is the Swiss Standard Minergie-A. The standard prescribes an annual net zero primary energy balance for heating, domestic hot water and ventilation. Electricity consumption for appliances and lighting is excluded. Additionally, Minergie-A is the first standard worldwide which includes a requirement in regard to embodied energy. Based on an analysis of 39 Minergie-A buildings, this paper shows that a wide range of different energy concepts and embodied energy strategies are possible in the scope of the label. The basis of all Minergie-A buildings is a well-insulated building envelope. However, the step from the Swiss Standard Minergie-A to a Net ZEB (net zero energy building) standard which includes electricity consumption for appliances and lighting is not a very big one. Increasing the size of the photovoltaic system is sufficient in most cases. Anyway, some of the Minergie-A buildings evaluated are also Net ZEBs. In this paper, it is also shown that the net zero balance during the operational phase of Net ZEBs clearly outweighs the increased embodied energy for additional materials in a life cycle energy analysis.