In this study,Mg-based composites,by the addition of ZnO,Ca_(2)ZnSi_(2)O_(7),Ca_(2)MgSi_(2)O_(7),and CaSiO_(3)as bioactive agents,were fabricated using friction stir processing.The microstructure and in vitro assessme...In this study,Mg-based composites,by the addition of ZnO,Ca_(2)ZnSi_(2)O_(7),Ca_(2)MgSi_(2)O_(7),and CaSiO_(3)as bioactive agents,were fabricated using friction stir processing.The microstructure and in vitro assessment of bioactivity,biodegradation rate,and corrosion behavior of the resultant composites were investigated in simulated body fluid(SBF).The results showed that during the immersion of composites in SBF for 28 d,due to the release of Ca^(2+)and PO_(4)^(3-)ions,hydroxyapatite(HA)crystals with cauliflower shaped morphology were deposited on the surface of composites,confirming good bioactivity of composites.In addition,due to the uniform distribution of bioceramic powders throughout Mg matrix,grain refinement of the Mg matrix,and uniform redistribution of secondary phase particles,the polarization resistance increased,and the biodegradation rate of composites significantly reduced compared to monolithic Mg matrix.The polarization corrosion resistance of Mg-ZnO increased from 0.216 to 2.499 kΩ/cm^(2)compared to monolithic Mg alloy.Additionally,Mg-ZnO composite with the weight loss of 0.0217 g after 28 d immersion showed lower weight loss compared to other samples with increasing immersion time.Moreover,Mg-ZnO composite with the biodegradation rate of 37.71 mm/a exhibited lower biodegradation rate compared to other samples with increasing immersion time.展开更多
In order to investigate the influence of secondary classification mode on waste generation features, this study classified domestic waste generated by 310 rural and urban households at urban areas and Shuigaozhuang Vi...In order to investigate the influence of secondary classification mode on waste generation features, this study classified domestic waste generated by 310 rural and urban households at urban areas and Shuigaozhuang Village of Xiqing District into 3 groups: compostable materials, recyclable materials and toxics on the basis of the constructed secondary classification mode of domestic waste. The study focused on waste generation strength and classification features, compared the waste generation features between rural and urban residents, and analyzed the re- lation between waste generation strength and economic and cultural factors. The re- sults indicated that the average generation speed of urban domestic waste was 423.08 g/(d.capita), and that of rural domestic waste was 629.89 g/(d.capita), there was significant difference between rural and urban compost generation strength (P= 0.00002), while the generation strength of recyclable materials and toxics between rural and urban areas had no significant difference (P=0.471 and P=0.099, respec- tively). Secondary classification mode is an effective source classification mode for domestic wastes and has positive effects on waste reduction and treatment.展开更多
Infection is a major potential complication in the clinical treatment of bone injuries. Magnesium (Mg)-based composites are biodegradable and antibacterial biomaterials that have been employed to reduce infection foll...Infection is a major potential complication in the clinical treatment of bone injuries. Magnesium (Mg)-based composites are biodegradable and antibacterial biomaterials that have been employed to reduce infection following surgical implants. The aim of present study was to synthesize and in-vitro characterize Mg-based scaffolds containing silver for bone tissue engineering. Porous Mg-based scaffolds with four silver concentrations (i.e., 0, 0.5 wt.%, 1 wt.%, and 2 wt.%), denoted by Mg?Ca?Mn-Zn-xAg (MCMZ?xAg)(where x is the silver concentration), were fabricated by the space holder technique. The effects of silver concentration on pore architecture, mechanical properties, bioactivity, and zone of bacterial inhibition were investigated in-vitro. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fluorescence microscopy were utilized to characterize the obtained scaffolds. In-vitro corrosion test results indicated that the MCMZ scaffolds with lower silver content were more resistant to corrosion than those enriched with higher amounts of silver. Examination of the antibacterial activity showed that the MCMZ?Ag scaffolds exhibited superb potential with respect to suppressing the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), in the inhibition zone around the MCMZ?Ag scaffolds, with increasing in the amount of incorporated silver;however, higher amounts of silver increased the cytotoxicity. Taken together, the results of this study demonstrate that the porous 0.5 wt.% Ag-containing scaffolds with interconnected pores, adequate mechanical properties, antibacterial activity, and cell adhesion are promising with respect to the repair and substitution of damaged and diseased bones.展开更多
Mg-based alloys received significant attention for temporary implant applications while, their applications have been limited by high degradation rate. Therefore, silver-zeolite doped hydroxyapatite(Ag-Zeo-HAp) coat...Mg-based alloys received significant attention for temporary implant applications while, their applications have been limited by high degradation rate. Therefore, silver-zeolite doped hydroxyapatite(Ag-Zeo-HAp) coating was synthesized on Ti O2-coated Mg alloy by physical vapour deposition(PVD) assisted electrodeposition technique to decrease the degradation rate of Mg alloy. X-ray diffraction(XRD) analysis and field emission scanning electron microscopy(FE-SEM) images showed the formation of a uniform and compact layer of Ag-Zeo-HAp with a thickness of 15 μm on the Ti O2 film with a thickness of 1 μm. The potentiodynamic polarization(PDP) and electrochemical impedance spectroscopy(EIS) tests indicated that corrosion resistance of Mg-Ca alloy was considerably increased by the Ag-Zeo-HAp coating. The bioactivity test in the simulated body fluid(SBF) solution showed that a dense and homogeneous bonelike apatite layer was formed on the Ag-Zeo-HAp surface after 14 d. Investigation of antibacterial activity via disk diffusion and spread plate methods showed that the Ag-Zeo-HAp coating had a significantly larger inhibition zone(3.86 mm) towards Escherichia coli(E. coli) compared with the Ti O2-coated Mg alloy(2.61 mm). The Ag-Zeo-HAp coating showed high antibacterial performance, good bioactivity, and high corrosion resistance which make it a perfect coating material for biomedical applications.展开更多
To find suitable biodegradable materials for implant applications,Mg−6Zn−0.3Mn−xCa(x=0,0.2 and 0.5,wt.%)alloys were prepared by semi-continuous casting followed by hot-extrusion technique.The microstructure and mechan...To find suitable biodegradable materials for implant applications,Mg−6Zn−0.3Mn−xCa(x=0,0.2 and 0.5,wt.%)alloys were prepared by semi-continuous casting followed by hot-extrusion technique.The microstructure and mechanical properties of Mg−6Zn−0.3Mn−xCa alloys were investigated using the optical microscope,scanning electron microscope and tensile testing.Results indicated that minor Ca addition can slightly refine grains of the extruded Mg−6Zn−0.3Mn alloy and improve its strength.When 0.2 wt.%and 0.5 wt.%Ca were added,the grain sizes of the as-extruded alloys were refined from 4.8 to 4.6 and 4.2μm,respectively.Of the three alloys studied,the alloy with 0.5 wt.%Ca exhibits better combined mechanical properties with the ultimate tensile strength and elongation of 334 MPa and 20.3%.The corrosion behaviour,cell viability and antibacterial activities of alloys studied were also evaluated.Increasing Ca content deteriorates the corrosion resistance of alloys due to the increase of amount of effective cathodic sites caused by the formation of more Ca2Mg6Zn3 phases.Cytotoxicity evaluation with L929 cells shows higher cell viability of the Mg−6Zn−0.3Mn−0.5Ca alloy compared to Mg−6Zn−0.3Mn and Mg−6Zn−0.3Mn−0.2Ca alloys.The antibacterial activity against Staphylococcus aureus is enhanced with increasing the Ca content due to its physicochemical and biological performance in bone repairing process.展开更多
In order to determine the level of resistance of sugar beet varieties against Rhizoctonia solani AG 2-21IIB and AG 4, a methodology was implemented under greenhouse conditions that contemplated the most important crit...In order to determine the level of resistance of sugar beet varieties against Rhizoctonia solani AG 2-21IIB and AG 4, a methodology was implemented under greenhouse conditions that contemplated the most important criteria regarding to plant-pathogen interaction. The effect of plant growth stage on the development of the disease was evaluated. Seven sugar beet varieties were tested for resistance to R. solani AG 2-2IIIB and AG 4. To detect differences in leaf temperature between/L solani inoculated plants and non-infected plants, an infrared (IR) camera was tested. High incidence of R. solani AG 2-2IIIB and AG 4 in sugar beet plants was evident when the fungal inoculum was applied to two and four weeks old plants. At four weeks after sowing, it was the optimum time to inoculate sugar beet plants in order to generate R. solani infection, since at this time all plants were infected. Significant differences were detected regarding disease incidence between sugar beet varieties inoculated with different anastomosis groups. Leaf temperature was significant different between inoculated and non-inoculated plants, demonstrated that this technique could be a new tool for breeders to screen for resistance of new varieties.展开更多
A study was conducted in an organic nursery in 2010 and 2011 on the maiden growth of sour cherry cultivars "Debreceni Botermo" and "Sabina" grafted on Mahaleb cherry seedlings (Prunus mahaleb L.). The young tree...A study was conducted in an organic nursery in 2010 and 2011 on the maiden growth of sour cherry cultivars "Debreceni Botermo" and "Sabina" grafted on Mahaleb cherry seedlings (Prunus mahaleb L.). The young trees were grown at a spacing of 25 cm × 1.0 m on a podzolic soil. The study focused on the differences in diameter and height of the maiden stock, the branch number, lateral shoots in the crown and their length, among treatments with various bioproducts applied to the maidens once or twice, such as granulated manure, Micosat, Humus UP (humus cultivated), Humus Active + Aktywit PM (positive microorganisms), BioFeed Amin, BioFeed Quality, Tytanit and Vinassa. The control maidens were not fertilized at all, or fertilized with NPK (nitrogen, potassium, phosphorus). The first time when these products were applied in the nursery was mid-May, and the second time was one month later. Repeating the application of humic preparations (vermiculites) and a formulation containing mycorrhizal fungi (Micosat) gave better results than applying them only once, but in the case of BF Quality and the preparation Tytanit treating the plants for the second time did not increase their growth vigour compared to the plants treated only once. And the effectiveness of the biopreparations was different for the treated cultivars changed.展开更多
In the present study,the thermal,mechanical,and biological properties of xAg/Ti-30Ta(x=0,0.41,0.82 and 2.48 at%)shape memory alloys(SMAs)were investigated.The study was conducted using optical and scanning electron mi...In the present study,the thermal,mechanical,and biological properties of xAg/Ti-30Ta(x=0,0.41,0.82 and 2.48 at%)shape memory alloys(SMAs)were investigated.The study was conducted using optical and scanning electron microscopy(SEM),X-ray diffractometry(XRD),compression test,and shape memory testing.The xAg/Ti-Ta was made using a powder metallurgy technique and microwave-sintering process.The results revealed that the addition of Ag has a significant effect on the pore size and shape,whereas the smallest pore size of 11μm was found with the addition of 0.41 at%along with a relative density of 72%.The fracture stress and strain increased with the addition of Ag,reaching the minimum values around 0.41 at%Ag.Therefore,this composition showed the maximum stress and strain at fracture region.Moreover,0.82 Ag/Ti-Ta shows more excellent corrosion resistance and biocompatibility than other percentages,obtaining almost the same behaviour of the pure Ti and Ti-6Al-4V alloys,which can be recommended for their promising and potential response for biomaterial applications.展开更多
University of New South Wales(UNSW Australia) had been involved in the study of premature failure of rock bolts in Australia coal mines from the initial identification of the problem in 1999. Rock bolt steel changes o...University of New South Wales(UNSW Australia) had been involved in the study of premature failure of rock bolts in Australia coal mines from the initial identification of the problem in 1999. Rock bolt steel changes over the last decade appear to have not reduced the incidence of failures. A broadened UNSW research project funded by the Australian Research Council(ARC) and Industry has targeted finding the environmental causes through extensive field and laboratory experiments. This paper describes the field studies conducted in underground coal mines,in particular attempts to measure the contribution to corrosion from groundwater,mineralogy and microbial activity. Various underground survey techniques were used to determine the extent of broken bolts,with the presence of both stress corrosion cracking(SCC) and localized deep pitting making no single technique suitable on their own.Groundwater found dripping from bolts across various coalfields in Australia were found to be not aggressive and known groundwater corrosivity classification systems did not correlate to where broken bolts were found. In-hole coupon bolts placed in roof strata containing claystone bands confirmed the clay as being a major contributor to corrosion. Microbes capable of contributing to steel corrosion were found to be present in groundwater,and culturing of the microbes taken from in-situ coupon bolts proved that the bacteria was present on the bolt surface. An ‘in-hole bolt corrosion coupon' development by the project may have multiple benefits of (1) helping quantify newly developed corrosivity classification systems,(2) providing an in-situ ground support corrosion monitoring tool,and (3) for testing possible corrosion protection solutions.展开更多
In this study, plant growth-promoting rhizobacteria(PGPR) were evaluated as potential biocontrol agents against postharvest pathogens of apple fruits. In vitro bioassays revealed that, out of 30 isolates screened, i...In this study, plant growth-promoting rhizobacteria(PGPR) were evaluated as potential biocontrol agents against postharvest pathogens of apple fruits. In vitro bioassays revealed that, out of 30 isolates screened, isolates APEC136 and APEC170 had the most significant inhibitory effects against the mycelial growth of several fungal pathogens. Analysis of 16 S ribosomal RNA(rR NA) sequences identified the two effective isolates as Paenibacillus polymyxa and Bacillus subtilis, respectively. The two strains showed greater growth in brain-heart infusion broth than in other growth media. Treatment of harvested apples with suspensions of either strain reduced the symptoms of anthracnose disease caused by two fungal pathogens, Colletotrichum gloeosporioides and Colletotrichum acutatum, and white rot disease caused by Botryosphaeria dothidea. Increased productions of amylase and protease by APEC136, and increased productions of chitinase, amylase, and protease by APEC170 might have been responsible for inhibiting mycelial growth. The isolates caused a greater reduction in the growth of white rot than of anthracnose. These results indicate that the isolates APEC136 and APEC170 are promising agents for the biocontrol of anthracnose and white rot diseases in apples after harvest, and suggest that these isolates may be useful in controlling these diseases under field conditions.展开更多
文摘In this study,Mg-based composites,by the addition of ZnO,Ca_(2)ZnSi_(2)O_(7),Ca_(2)MgSi_(2)O_(7),and CaSiO_(3)as bioactive agents,were fabricated using friction stir processing.The microstructure and in vitro assessment of bioactivity,biodegradation rate,and corrosion behavior of the resultant composites were investigated in simulated body fluid(SBF).The results showed that during the immersion of composites in SBF for 28 d,due to the release of Ca^(2+)and PO_(4)^(3-)ions,hydroxyapatite(HA)crystals with cauliflower shaped morphology were deposited on the surface of composites,confirming good bioactivity of composites.In addition,due to the uniform distribution of bioceramic powders throughout Mg matrix,grain refinement of the Mg matrix,and uniform redistribution of secondary phase particles,the polarization resistance increased,and the biodegradation rate of composites significantly reduced compared to monolithic Mg matrix.The polarization corrosion resistance of Mg-ZnO increased from 0.216 to 2.499 kΩ/cm^(2)compared to monolithic Mg alloy.Additionally,Mg-ZnO composite with the weight loss of 0.0217 g after 28 d immersion showed lower weight loss compared to other samples with increasing immersion time.Moreover,Mg-ZnO composite with the biodegradation rate of 37.71 mm/a exhibited lower biodegradation rate compared to other samples with increasing immersion time.
基金Supported by Agricultural Scientific and Technological Achievement Transformation and Popularization Project of Tianjin(201003010)~~
文摘In order to investigate the influence of secondary classification mode on waste generation features, this study classified domestic waste generated by 310 rural and urban households at urban areas and Shuigaozhuang Village of Xiqing District into 3 groups: compostable materials, recyclable materials and toxics on the basis of the constructed secondary classification mode of domestic waste. The study focused on waste generation strength and classification features, compared the waste generation features between rural and urban residents, and analyzed the re- lation between waste generation strength and economic and cultural factors. The re- sults indicated that the average generation speed of urban domestic waste was 423.08 g/(d.capita), and that of rural domestic waste was 629.89 g/(d.capita), there was significant difference between rural and urban compost generation strength (P= 0.00002), while the generation strength of recyclable materials and toxics between rural and urban areas had no significant difference (P=0.471 and P=0.099, respec- tively). Secondary classification mode is an effective source classification mode for domestic wastes and has positive effects on waste reduction and treatment.
基金partial financial support to this research from the Saskatchewan Health Research Foundation (SHRF)
文摘Infection is a major potential complication in the clinical treatment of bone injuries. Magnesium (Mg)-based composites are biodegradable and antibacterial biomaterials that have been employed to reduce infection following surgical implants. The aim of present study was to synthesize and in-vitro characterize Mg-based scaffolds containing silver for bone tissue engineering. Porous Mg-based scaffolds with four silver concentrations (i.e., 0, 0.5 wt.%, 1 wt.%, and 2 wt.%), denoted by Mg?Ca?Mn-Zn-xAg (MCMZ?xAg)(where x is the silver concentration), were fabricated by the space holder technique. The effects of silver concentration on pore architecture, mechanical properties, bioactivity, and zone of bacterial inhibition were investigated in-vitro. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fluorescence microscopy were utilized to characterize the obtained scaffolds. In-vitro corrosion test results indicated that the MCMZ scaffolds with lower silver content were more resistant to corrosion than those enriched with higher amounts of silver. Examination of the antibacterial activity showed that the MCMZ?Ag scaffolds exhibited superb potential with respect to suppressing the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), in the inhibition zone around the MCMZ?Ag scaffolds, with increasing in the amount of incorporated silver;however, higher amounts of silver increased the cytotoxicity. Taken together, the results of this study demonstrate that the porous 0.5 wt.% Ag-containing scaffolds with interconnected pores, adequate mechanical properties, antibacterial activity, and cell adhesion are promising with respect to the repair and substitution of damaged and diseased bones.
文摘Mg-based alloys received significant attention for temporary implant applications while, their applications have been limited by high degradation rate. Therefore, silver-zeolite doped hydroxyapatite(Ag-Zeo-HAp) coating was synthesized on Ti O2-coated Mg alloy by physical vapour deposition(PVD) assisted electrodeposition technique to decrease the degradation rate of Mg alloy. X-ray diffraction(XRD) analysis and field emission scanning electron microscopy(FE-SEM) images showed the formation of a uniform and compact layer of Ag-Zeo-HAp with a thickness of 15 μm on the Ti O2 film with a thickness of 1 μm. The potentiodynamic polarization(PDP) and electrochemical impedance spectroscopy(EIS) tests indicated that corrosion resistance of Mg-Ca alloy was considerably increased by the Ag-Zeo-HAp coating. The bioactivity test in the simulated body fluid(SBF) solution showed that a dense and homogeneous bonelike apatite layer was formed on the Ag-Zeo-HAp surface after 14 d. Investigation of antibacterial activity via disk diffusion and spread plate methods showed that the Ag-Zeo-HAp coating had a significantly larger inhibition zone(3.86 mm) towards Escherichia coli(E. coli) compared with the Ti O2-coated Mg alloy(2.61 mm). The Ag-Zeo-HAp coating showed high antibacterial performance, good bioactivity, and high corrosion resistance which make it a perfect coating material for biomedical applications.
基金the financial supports from the Natural Science Foundation of Shanxi Province, China (201901D211310)the National Natural Science Foundation of China (52071227)+2 种基金the Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi, China (TSTAP)Science and Technology Major Projects of Shanxi Province, China (20191102004, 201903D111008)the Central Special Funds Guiding the Development of Local Science and Technology, China (YDZX20181400002967)
文摘To find suitable biodegradable materials for implant applications,Mg−6Zn−0.3Mn−xCa(x=0,0.2 and 0.5,wt.%)alloys were prepared by semi-continuous casting followed by hot-extrusion technique.The microstructure and mechanical properties of Mg−6Zn−0.3Mn−xCa alloys were investigated using the optical microscope,scanning electron microscope and tensile testing.Results indicated that minor Ca addition can slightly refine grains of the extruded Mg−6Zn−0.3Mn alloy and improve its strength.When 0.2 wt.%and 0.5 wt.%Ca were added,the grain sizes of the as-extruded alloys were refined from 4.8 to 4.6 and 4.2μm,respectively.Of the three alloys studied,the alloy with 0.5 wt.%Ca exhibits better combined mechanical properties with the ultimate tensile strength and elongation of 334 MPa and 20.3%.The corrosion behaviour,cell viability and antibacterial activities of alloys studied were also evaluated.Increasing Ca content deteriorates the corrosion resistance of alloys due to the increase of amount of effective cathodic sites caused by the formation of more Ca2Mg6Zn3 phases.Cytotoxicity evaluation with L929 cells shows higher cell viability of the Mg−6Zn−0.3Mn−0.5Ca alloy compared to Mg−6Zn−0.3Mn and Mg−6Zn−0.3Mn−0.2Ca alloys.The antibacterial activity against Staphylococcus aureus is enhanced with increasing the Ca content due to its physicochemical and biological performance in bone repairing process.
文摘In order to determine the level of resistance of sugar beet varieties against Rhizoctonia solani AG 2-21IIB and AG 4, a methodology was implemented under greenhouse conditions that contemplated the most important criteria regarding to plant-pathogen interaction. The effect of plant growth stage on the development of the disease was evaluated. Seven sugar beet varieties were tested for resistance to R. solani AG 2-2IIIB and AG 4. To detect differences in leaf temperature between/L solani inoculated plants and non-infected plants, an infrared (IR) camera was tested. High incidence of R. solani AG 2-2IIIB and AG 4 in sugar beet plants was evident when the fungal inoculum was applied to two and four weeks old plants. At four weeks after sowing, it was the optimum time to inoculate sugar beet plants in order to generate R. solani infection, since at this time all plants were infected. Significant differences were detected regarding disease incidence between sugar beet varieties inoculated with different anastomosis groups. Leaf temperature was significant different between inoculated and non-inoculated plants, demonstrated that this technique could be a new tool for breeders to screen for resistance of new varieties.
文摘A study was conducted in an organic nursery in 2010 and 2011 on the maiden growth of sour cherry cultivars "Debreceni Botermo" and "Sabina" grafted on Mahaleb cherry seedlings (Prunus mahaleb L.). The young trees were grown at a spacing of 25 cm × 1.0 m on a podzolic soil. The study focused on the differences in diameter and height of the maiden stock, the branch number, lateral shoots in the crown and their length, among treatments with various bioproducts applied to the maidens once or twice, such as granulated manure, Micosat, Humus UP (humus cultivated), Humus Active + Aktywit PM (positive microorganisms), BioFeed Amin, BioFeed Quality, Tytanit and Vinassa. The control maidens were not fertilized at all, or fertilized with NPK (nitrogen, potassium, phosphorus). The first time when these products were applied in the nursery was mid-May, and the second time was one month later. Repeating the application of humic preparations (vermiculites) and a formulation containing mycorrhizal fungi (Micosat) gave better results than applying them only once, but in the case of BF Quality and the preparation Tytanit treating the plants for the second time did not increase their growth vigour compared to the plants treated only once. And the effectiveness of the biopreparations was different for the treated cultivars changed.
基金Project(Q.J130000.2524.12H60)supported by the Ministry of Higher Education of Malaysia and Universiti Teknologi Malaysia。
文摘In the present study,the thermal,mechanical,and biological properties of xAg/Ti-30Ta(x=0,0.41,0.82 and 2.48 at%)shape memory alloys(SMAs)were investigated.The study was conducted using optical and scanning electron microscopy(SEM),X-ray diffractometry(XRD),compression test,and shape memory testing.The xAg/Ti-Ta was made using a powder metallurgy technique and microwave-sintering process.The results revealed that the addition of Ag has a significant effect on the pore size and shape,whereas the smallest pore size of 11μm was found with the addition of 0.41 at%along with a relative density of 72%.The fracture stress and strain increased with the addition of Ag,reaching the minimum values around 0.41 at%Ag.Therefore,this composition showed the maximum stress and strain at fracture region.Moreover,0.82 Ag/Ti-Ta shows more excellent corrosion resistance and biocompatibility than other percentages,obtaining almost the same behaviour of the pure Ti and Ti-6Al-4V alloys,which can be recommended for their promising and potential response for biomaterial applications.
基金the UNSW ARC funded project,these companies includeAnglo American Coal,BHP Billiton,Centennial Coal,Glencore,Jennmar Australia and Whitehaven Coal
文摘University of New South Wales(UNSW Australia) had been involved in the study of premature failure of rock bolts in Australia coal mines from the initial identification of the problem in 1999. Rock bolt steel changes over the last decade appear to have not reduced the incidence of failures. A broadened UNSW research project funded by the Australian Research Council(ARC) and Industry has targeted finding the environmental causes through extensive field and laboratory experiments. This paper describes the field studies conducted in underground coal mines,in particular attempts to measure the contribution to corrosion from groundwater,mineralogy and microbial activity. Various underground survey techniques were used to determine the extent of broken bolts,with the presence of both stress corrosion cracking(SCC) and localized deep pitting making no single technique suitable on their own.Groundwater found dripping from bolts across various coalfields in Australia were found to be not aggressive and known groundwater corrosivity classification systems did not correlate to where broken bolts were found. In-hole coupon bolts placed in roof strata containing claystone bands confirmed the clay as being a major contributor to corrosion. Microbes capable of contributing to steel corrosion were found to be present in groundwater,and culturing of the microbes taken from in-situ coupon bolts proved that the bacteria was present on the bolt surface. An ‘in-hole bolt corrosion coupon' development by the project may have multiple benefits of (1) helping quantify newly developed corrosivity classification systems,(2) providing an in-situ ground support corrosion monitoring tool,and (3) for testing possible corrosion protection solutions.
基金supported by the 2016 Research Fund of Andong National University,Gyeongbuk Province,Korea
文摘In this study, plant growth-promoting rhizobacteria(PGPR) were evaluated as potential biocontrol agents against postharvest pathogens of apple fruits. In vitro bioassays revealed that, out of 30 isolates screened, isolates APEC136 and APEC170 had the most significant inhibitory effects against the mycelial growth of several fungal pathogens. Analysis of 16 S ribosomal RNA(rR NA) sequences identified the two effective isolates as Paenibacillus polymyxa and Bacillus subtilis, respectively. The two strains showed greater growth in brain-heart infusion broth than in other growth media. Treatment of harvested apples with suspensions of either strain reduced the symptoms of anthracnose disease caused by two fungal pathogens, Colletotrichum gloeosporioides and Colletotrichum acutatum, and white rot disease caused by Botryosphaeria dothidea. Increased productions of amylase and protease by APEC136, and increased productions of chitinase, amylase, and protease by APEC170 might have been responsible for inhibiting mycelial growth. The isolates caused a greater reduction in the growth of white rot than of anthracnose. These results indicate that the isolates APEC136 and APEC170 are promising agents for the biocontrol of anthracnose and white rot diseases in apples after harvest, and suggest that these isolates may be useful in controlling these diseases under field conditions.