Synthetic biology promises to simplify the construction of metabolic pathways by assembling the de- tached modules of the whole pathway. This gives new approaches for the microbial production of industrial products su...Synthetic biology promises to simplify the construction of metabolic pathways by assembling the de- tached modules of the whole pathway. This gives new approaches for the microbial production of industrial products such as polyhydroxyalkanoates (PHA). In this study, to produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) by Pseudomonas stutzeri 1317 from unrelated carbon sources such as glucose, the phaCl-phaZ-phaC2 operon of P. stutzeri 1317 was knocked out to generate the PHA deficient mutant P. stutzeri 1317LF. Then three modules containing phaCahAReBRe, phaCahBReGep and phaCAhPah were introduced into P. stutzeri 1317LF separately The shake flask results indicated that the precursor supply and PHA synthase activity were the vital factors for the PHBHHx accumulation of P. stutzeri 1317LF. Furthermore, the PHBHHx accumulation of the recombinants from different carbon resources were performed. The highest PHBHHx content was 23.7% (by mass) with 58.6% (by mole) 3HB fraction. These results provide basis for further improving the PHBHHx accumulation of P. stutzeri from unrelated carbon sources.展开更多
This paper develops a high time-resolution optimal power generation mix model in its time resolution of 10 minutes on 365 days by linear programming technique. The model allows us to analyse the massive deployment of ...This paper develops a high time-resolution optimal power generation mix model in its time resolution of 10 minutes on 365 days by linear programming technique. The model allows us to analyse the massive deployment of photovoltaic system and wind power generation in power system explicitly considering those short-term output variation. PV (photovoltaic) and wind output are estimated, employing meteorological database. Simulation results reveal that variable fluctuation derived from a high penetration level of those renewables is controlled by quick load following operation of natural gas combined cycle power plant, pumped-storage hydro power, stationary NAS (sodium and sulfur) battery and the output suppression control of PV and wind. It additionally turns out that the operational configuration of those technologies for the renewable variability differs significantly depending on those renewable output variations in each season and solving the seasonal electricity imbalance as well as the daily imbalance is important if variable renewables are massively deployed.展开更多
基金Supported by the National lqatural Science Foundation of China (31260015), Natural Science Foundation of Qinghai Province (2012-Z-919Q), the Extramural Project from State Key Laboratory for Agrobiotechnology (2012SKLAB06-5) and the Research Funds for Young Project of Qinghal University (2011-QYY-1).
文摘Synthetic biology promises to simplify the construction of metabolic pathways by assembling the de- tached modules of the whole pathway. This gives new approaches for the microbial production of industrial products such as polyhydroxyalkanoates (PHA). In this study, to produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) by Pseudomonas stutzeri 1317 from unrelated carbon sources such as glucose, the phaCl-phaZ-phaC2 operon of P. stutzeri 1317 was knocked out to generate the PHA deficient mutant P. stutzeri 1317LF. Then three modules containing phaCahAReBRe, phaCahBReGep and phaCAhPah were introduced into P. stutzeri 1317LF separately The shake flask results indicated that the precursor supply and PHA synthase activity were the vital factors for the PHBHHx accumulation of P. stutzeri 1317LF. Furthermore, the PHBHHx accumulation of the recombinants from different carbon resources were performed. The highest PHBHHx content was 23.7% (by mass) with 58.6% (by mole) 3HB fraction. These results provide basis for further improving the PHBHHx accumulation of P. stutzeri from unrelated carbon sources.
文摘This paper develops a high time-resolution optimal power generation mix model in its time resolution of 10 minutes on 365 days by linear programming technique. The model allows us to analyse the massive deployment of photovoltaic system and wind power generation in power system explicitly considering those short-term output variation. PV (photovoltaic) and wind output are estimated, employing meteorological database. Simulation results reveal that variable fluctuation derived from a high penetration level of those renewables is controlled by quick load following operation of natural gas combined cycle power plant, pumped-storage hydro power, stationary NAS (sodium and sulfur) battery and the output suppression control of PV and wind. It additionally turns out that the operational configuration of those technologies for the renewable variability differs significantly depending on those renewable output variations in each season and solving the seasonal electricity imbalance as well as the daily imbalance is important if variable renewables are massively deployed.