The effect of functionalized graphene on the growth and development of Vicia faba L.was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil.Seedlin...The effect of functionalized graphene on the growth and development of Vicia faba L.was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil.Seedlings of V.faba planted in this peat soil were treated with either distilled water(CK)or 25 mg·L^(−1)(G25)of functionalized graphene solution.Results showed that the height and root length of V.faba seedlings in the G25 group were significantly larger than those in CK group.The microbial com-munity was analyzed by amplifying and sequencing the 16S rRNA gene V_(3)-V_(4) region of bacteria and internal transcribed spacer re-gion of fungi in rhizosphere soil using Illumina MiSeq technology.Alpha and beta diversity analysis indicated that functionalized graphene increased the richness and diversity of bacteria and fungi in the V.faba rhizosphere peat soil.The abundances of three ni-trogen cycling-related bacteria,Hydrogenophaga,Sphingomonas and Nitrosomonadaceae,were also altered after treatment with the functionalized graphene.The relative abundance of Basilicum,related to soil phosphorus solubilization,decreased in the fungal com-munity,while the relative abundance of Clonostachys and Dimorphospora,which exhibited strong biological control over numerous fungal plant pathogens,nematodes and insects,increased in the soil after functionalized graphene treatment.Redundancy analysis re-vealed that the potential of hydrogen(pH),organic matter,and total phosphorus contributed the most to the changes in bacterial and fungal community composition in the rhizosphere soil.Overall,our findings suggested that the addition of functionalized graphene altered the relative abundances of nitrogen and phosphorus cycling-related microorganisms in peat soil,promoting changes in the physicochemical properties of the soil and ultimately leading to the improved growth of V.faba plants.展开更多
Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two o...Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process. In this work, we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge. Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g., flocculating ability, zeta-potential, hydrophobicity, and extracellular polymeric substances constituents). Moreover, the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.展开更多
This study was conducted to study the feasibility of biochar in soil im- provement and tobacco quality. The black soil in NinganCountry of Mudanjiang was used as the material in this study, and the effects of biochar ...This study was conducted to study the feasibility of biochar in soil im- provement and tobacco quality. The black soil in NinganCountry of Mudanjiang was used as the material in this study, and the effects of biochar on tobacco-planting soil C/N, soil microorganisms, the development of tobacco, and chemical compo- nents and neutral aroma components in flue-cured tobacco werestudied. The results showed that the application of biochar at a rate of 1 800 kg/hm2 could increase soil C/N by 31.79%, and the quantity of actinomycetes in the soil was 3.8 times as much as that in control. The growth wasobviously better after biochar application, plant height and effective leaf number were significantly higher than those ofcontrol, but total sugar and nicotine were not significantly different. The application of biochar at a rate of 1 200 kg/hm2 increased the potassium content by 11%, the application of biochar at a rate of 2 400 kg/hm2 improved total sugar content by 5.40%, and the application of biochar at a rate of 1 800 kg/hm2 made the tobacco solanone content 1.97 times as that of control. Comprehensive studies showed that the application of biochar 1 200-1 800 kg/hm2 could improvesoilenvironment, and promote tobacco growth and quality.展开更多
[Objective] The research aimed to isolate and identify the anthracnose pathogen of Cassava and study its biological charcteristics.[Method] Two isolates of anthracnose (CCGHN01 and CCGHN03) in Cassava were isolated ...[Objective] The research aimed to isolate and identify the anthracnose pathogen of Cassava and study its biological charcteristics.[Method] Two isolates of anthracnose (CCGHN01 and CCGHN03) in Cassava were isolated from the diseased leaves collected from Hainan of China.They were identified through the morphological observation of conidia and ITS sequence analysis.And the morphological characteristics were studied.[Result] The morphological observation of conidia and ITS sequence analysis indicated that the two isolates were Colletotrichum gloeosporioides.The morphological characteristics study results showed that optimum medium for the growth of two strains was PSA,the optimum temperatures were 26 ℃ and 30 ℃ respectively,the optimum pH was 8.0,the optimum light conditions were alternative light and dark and complete darkness respectively.For the conidia germination of two strains,the optimum temperatures were 28 ℃ and 30 ℃ respectively and the lethal temperature was 55 ℃ remaining 10 min.[Conclusion] The research laid the foundation for further control of anthracnose in Cassava.展开更多
[Objective] To investigate the effect of biochar on the chemical fertility of vegetable soil. [Method] By pot experiments, the effect of biochar the soil pH and the content of organic matter, available nitrogen, readi...[Objective] To investigate the effect of biochar on the chemical fertility of vegetable soil. [Method] By pot experiments, the effect of biochar the soil pH and the content of organic matter, available nitrogen, readily available potassium, avail- able phosphorus, water-soluble phosphorus, exchangeable calcium and magnesium were investigated. The experiment contained five treatments, i.e., CK (no biochar), T1 (0.10% biochar), T2 (0.25% biochar), T3 (0.50% biochar) and T4 (1.00% biochar). [Result] As the application amount of biochar increases in the treatments, the soil pH, the content of organic matter and readily available potassium ascended significantly, with a trend of T4〉T3 〉T2〉TI〉CK; the contents of available phospho- rus and water-soluble phosphorus first show upward trend then downward trend, with T3 being the highest and CK the lowest; the contents of available nitrogen and exchangeable magnesium did not assume obvious change; compared with control, an appropriate amount of char could significantly increase the content of exchangeable calcium. [Conclusion] Biochar can significantly improve the chemical fertility of vegetable soil, and the application amount in T3 (0.50% biochar) brings the best effects.展开更多
[Objective] This study aimed to provide the basis for scientific and rea- sonable application of nitrogen fertilizer and control Of agricultural non-point source pollution in vegetable-growing area at Chaihe catchment...[Objective] This study aimed to provide the basis for scientific and rea- sonable application of nitrogen fertilizer and control Of agricultural non-point source pollution in vegetable-growing area at Chaihe catchment of Dianchi Lake. [Method] A pot experiment was carried out to compare the loss of nitrogen via ammonia volatilization and nitrogen leaching after application of biochar coated urea (BCU) and common urea (Urea) with different nitrogen rates (0 mg N/kg soil, 400 mg N/kg soil, 320 mg N/kg soil and 280 mg N/kg soil). [Result] The results indicated that the amount of nitrogen loss was proportional to nitrogen applied rate. Leaching nitrogen was higher than ammonia volatilization. Compare with Urea treatments, ammonia volatilization and nitrogen leaching losses were significantly lower in BCU treatments at the same nitrogen application rate. At the nitrogen application rate of 320 and 280 mg N/kg soil, nitrogen loss, ammonia volatilization and leaching nitrogen was 43.5%-45.5%, 3.7%-21.7% and 49.8%-52.1% lower in BCU treatments than in Ure- a treatments, respectively. [Conclusion] The application of BCU could minimize nitro- gen loss by reducing nitrate leaching loss. It can be concluded that the low nitrogen application rate combined with BCU have a practical influence on controlling the risk of nitrogen pollution in Dianchi Lake.展开更多
Activated carbon after saturated adsorption of EDTA was used as particle electrode in a three-dimensional electrode reactor to treat EDTA-containing wastewater.Electrochemical method was used to regenerate activated c...Activated carbon after saturated adsorption of EDTA was used as particle electrode in a three-dimensional electrode reactor to treat EDTA-containing wastewater.Electrochemical method was used to regenerate activated carbon after many times of electrolysis.Based on the analysis of infrared spectra of activated carbon after adsorption and repeated electrolysis,EDTA was degraded into glycine,and then non-catalytic activated associated complex was formed with N—H bond on the activated carbon.The catalytic ability of the activated carbon vanished and the EDTA degradation efficiency was dropped.Activated carbon could be effectively regenerated by electrochemical method in the three-dimensional reactor.Effects of electric current,conductivity and pH on activated carbon regeneration were investigated,and the optimum conditions were concluded as follows:100-300 mA of current intensity,1.39 mS/cm of electric conductivity,60 min of electrolysis time and pH 6.0-8.0.Under the optimized conditions,the activity of the activated carbon can be recovered and the residual total organic carbon(TOC) was below 10 mg/L(the initial TOC was 200 mg/L) in the three-dimensional electrode reactor.展开更多
This experiment was conducted in Xinxiang, Henan from June 2013 to June 2014. Total four treatments were designed including farmers ’ common practice (F, 250 kg/hm^2), 80% F (LF, 200 kg/hm^2), 80% F+biochar (LF...This experiment was conducted in Xinxiang, Henan from June 2013 to June 2014. Total four treatments were designed including farmers ’ common practice (F, 250 kg/hm^2), 80% F (LF, 200 kg/hm^2), 80% F+biochar (LFC) and no fertilizer (CK) to measure the dynamic emissions of CO2 and N2O from a summer maize-winter wheat field by static chamber-gas chromatography method. The results showed that the soil CO2 emission was 21.8-1 022.7 mg/(m^2·h), and was mainly influenced by soil temperature and moisture content. During the growth of summer maize, the soil CO2 emission was more significantly affected by soil moisture con-tent; and in winter wheat growing season, it was more significantly affected by soil temperature in the top 5 cm. The LF and LFC treatments significantly reduced the soil cumulative CO2 emission, especial y during the growth of winter wheat. Fertiliza-tion and irrigation were the main factors influencing the soil N2O emission. The soil N2O emission during the fertilization period accounted for 73.9%-74.5% and 40.5%-43.6% of the soil cumulative N2O emission during the summer maize-and winter wheat-growing season, respectively. The peak of emission fluxes was determined by fertilization amount, while the occurrence time of emission peak and emission re-duction effect were influenced by irrigation. The LF treatment reduced the soil cu-mulative N2O emission by 15.7%-16.8% and 18.1%-18.5% during the growth period of summer maize and winter wheat, respectively. Reduced nitrogen fertilization is an effective way for reducing N2O emission in intensive high-yielding farmland. Under a suitable nitrogen level (200 kg/hm^2), the application of biochar showed no significant effect on the soil N2O emission in a short term. The N2O emission factors of the L and LF treatments were 0.60% and 0.56%, respectively. ln the intensive high-yield-ing farmland of North China, reducing the nitrogen application amount is an appro-priate measure to mitigate greenhouse gas emissions without crop yield loss.展开更多
[Objective] With a rice variety "Long Rice 11" as a test cultivar,an experiment of raising rice seedlings with the new substrata prepared from biochar,and maize stalks,rice husks,organic fertilizer,turf,zeolite,fine...[Objective] With a rice variety "Long Rice 11" as a test cultivar,an experiment of raising rice seedlings with the new substrata prepared from biochar,and maize stalks,rice husks,organic fertilizer,turf,zeolite,fine river sand and arable layer soil by mixing according to certain volume proportions was caried out,in order to investigate the physical and chemical properties of different organic-material seedling-raising substrata and the effects of these substrata on seedling growth.[Method] The experiment raised seedlings in greenhouses and adopted randomized block arrangement.[Result] The substratum of biochar mixed with maize stalks and rice husks could increase the maximum water-holding capacity of the substratum,reduce the volume weight of the substratum and improve the buffering effect of the substratum.It also had great effects on the contents of alkali-hydrolyzale nitrogen and rapidly available potassium in the substratum,and could improve the root number and substantial degree of rice seedlings.[Conclusion] Biochar with maize stalks and rice husks(the treament HC) is the optimal substratum in this study.展开更多
[Objective] This study aimed to explore the biological characteristics of Col etotrichum gloeosporioides in pears. [Method] Twenty-five C. gloeosporioides strains were isolated and identified from the diseased samples...[Objective] This study aimed to explore the biological characteristics of Col etotrichum gloeosporioides in pears. [Method] Twenty-five C. gloeosporioides strains were isolated and identified from the diseased samples. Their pathogenicity was identified by inoculating the surface of punctured pears with fungal discs. The effects of different temperatures, pH values, carbon sources and nitrogen sources on the growth of C. gloeosporioides mycelia were explored by incubating fungal discs on the center of plates. [Result] Among the twenty-five C. gloeosporioides strains, three had strong pathogenicity, and eighteen had intermediate pathogenicity, and four strains had weak pathogenicity. Those highly-pathogenic strains had darker colonies, with dense mycelia, whereas those lowly-pathogenic ones had white colonies, with sparse mycelia. Those with fast-growing colonies showed strong pathogenicity, while those with slowly-growing colonies displayed weak pathogenicity. There was no relationship between conidia yield and pathogenicity. The optimum temperature for the growth of C. gloeosporioides mycelia was 25-30 ℃, and the optimum pH was 5.0-7.0. C. gloeosporioides could make use of various carbon sources (monosaccharide and disaccharide), inorganic and organic nitrogen sources, and the optimal carbon source and nitrogen source were sucrose and beef extract, respectively. [Conclusion] Our study benefits further understanding of C. gloeospori-oides and helps to control pear anthracnose more effectively.展开更多
A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C...A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C/C composites were isolated and characterised by the size distribution and morphology. The evolvement of wear particles in the hip joint simulator was proposed. The results show that the wear particles from two kinds of C/C composites have a size ranging from submicron to tens of micrometers. The wear particles have various morphologies including broken fiber, fragment fiber, slice pyrolytic carbon and spherical pyrolytic carbon. C/C composites with needled carbon cloth preforms have larger size range and more broken fiber particles and slice pyrolytic carbon particles in comparison with C/C composites with carbon felt preforms. The evolvement of pyrolytic carbon particles is caused by surface regularization, whereas, the evolvement of carbon fiber particles is related to stress direction in the hip joint simulator.展开更多
Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build...Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build the neural network model by which the expected outflow CODM can be acquired under the inflow CODM condition. Results The improved self-organized learning algorithm can assign the centers into appropriate places , and the RBF network's outputs at the sample points fit the experimental data very well. Conclusion The model of ozonation /BAC system based on the RBF network am describe the relationshipamong various factors correctly, a new prouding approach tO the wate purification process is provided.展开更多
[Objective] The aim was to explore biocontrol approaches of strawberry an-thracnose. [Method] With hyphal growth inhibition method, bacteriostatic activities of Bacil us subtilis and Osthole on strawberry anthracnose ...[Objective] The aim was to explore biocontrol approaches of strawberry an-thracnose. [Method] With hyphal growth inhibition method, bacteriostatic activities of Bacil us subtilis and Osthole on strawberry anthracnose were measured and field test was carried out. [Result] The results show that both of Bacil us subtilis and Osthole were of higher bacteriostatic activity on strawberry anthracnose, and the values of EC50 were 0.007 5 mg/L and 1.063 0 ml/L, respectively. The result of field test show that the prevention effects of Bacil us subtilis (600-750 g/hm2) and 25% prochloraz (600 ml/hm2) both achieved higher than 76%, 7 and 14 d after triple medical applica-tions with rains sheltered or in open field. But the effects were of extremely signifi-cant differences with that of Osthole (1 800-2 700 ml/hm2) (P〈0.01). [Conclusion] Bacil us subtilis can be made use of for control ing strawberry anthracnose.展开更多
In order to mitigate the occurrence and damage of cowpea anthracnose and reduce the chemical pesticide consumption, residue and environmental pollution, the methods of forecasting, randomized block design and statisti...In order to mitigate the occurrence and damage of cowpea anthracnose and reduce the chemical pesticide consumption, residue and environmental pollution, the methods of forecasting, randomized block design and statistical analysis were conducted to study the control effect of biopesticide chitosan, biochemical compound Prochloraz-Chitosan and chemical pesticides difenoconazole and thifluzamide by field efficacy trials. The results showed that under serious occurrence of anthracnose in autumn greenhouse cowpea, when the 2% chJtosan AS (2 250 g/hm^2), 46% Prochloraz-Chitosan EW (450 g/hm^2), 10% difenoconazole WG (900 g/hm^2, CK) or 24% thifluzamide SC (360 ml/hm^2) were applied three times with an interval of 5-8 d, the control efficiency on day 7, 14 and 20 reached 83%, 78% and 73%, respectively. No significant difference was found in control efficiency among the four kinds of agents. These four kinds of agents, especially chitosan and Prochloraz-Chitosan, could be used as ideal agents for controlling anthracnose, as well as for modern agricultural demonstration zones, pollution-free agricultural products, green agricultural products and organic agricultural products,thereby meeting the develop- ment needs of 'modern agriculture, green agriculture, organic agriculture and ecological agriculture.展开更多
Iron-modified biochar(FeOS)is known to be effective at immobilization of arsenic(As)in soils.A pot experiment was conducted to investigate the effects of FeOS on As availability and ttransportation in the soil-rice sy...Iron-modified biochar(FeOS)is known to be effective at immobilization of arsenic(As)in soils.A pot experiment was conducted to investigate the effects of FeOS on As availability and ttransportation in the soil-rice system at different growth stages of rice with different pollution levels.The results showed that Fe concentration decreased and As concentration increased in paddy soils with the FeOS addition,especially in 120 mg/kg As treatment,the As concentration decreased by 16.46%and 30.56%at the maturity stage with 0.5%and 1%FeOS additions,respectively.Compared with the control,the application of FeOS reduced the arsenic content in rice tissues and increased the biomass,with the root biomass increased by 12.68%and the shoot biomass was increased by 8.94%with the addition of 1%FeOS.This may be related to the promotion of iron plaque formation and the transformation of microbial community structure in FeOS treatments,in accordance with the result of gene abundance and Fe/As contents of iron plaque in the study.This study is expected to provide further support and theoretical basis for the application of FeOS in the remediation of As contaminated paddy soil.展开更多
Four sewage sludge(SS)feedstocks with distinct properties were converted into biochars by pyrolysis at 300−700℃,in order to clarify the effects of the composition difference of SS feedstocks.The yields of biochars pr...Four sewage sludge(SS)feedstocks with distinct properties were converted into biochars by pyrolysis at 300−700℃,in order to clarify the effects of the composition difference of SS feedstocks.The yields of biochars present a positive correlation with the contents of ash in SS.Notedly,the contents of organic matter(OM)in SS largely determine the quality of biochars.SS feedstocks with high content of OM are more likely to form stable biochars with higher aromaticity/carbonization degree,and the formed biochars possess higher calorific values.The contents of residual OM in biochars derived from SS feedstocks with low content of OM likely fail to meet the needs of soil improvement(10 wt.%).Most of heavy metals(HMs)existing in raw SS are remained in biochars after pyrolysis.The biochar produced from SS feedstocks with high content of HMs usually contains higher contents of HMs.Surprisingly,the leachability of HMs in biochars is all weakened to some extent compared to raw SS.In addition,the biochars show higher thermal stability and pH values,and P/K nutrients are enriched in biochars.The biochars prepared from four SS feedstocks exhibit different adsorption ability of methylene blue,especially at low dosage of biochar.展开更多
[Objective] This study was to investigate the effects of different biochar dosages and trpes on growth, yield and output value of flue-cured tobacco in Hanzhong. [Methods] In May-September of 2013, Xiaonanhai Town, Na...[Objective] This study was to investigate the effects of different biochar dosages and trpes on growth, yield and output value of flue-cured tobacco in Hanzhong. [Methods] In May-September of 2013, Xiaonanhai Town, Nanzheng County, Hanzhong City, a field experiment was carded out to study the effects of- biochardosage and type on tobacco agronomic traits, yield and output value in each growth period. [Results] Biochar application significantly increased plant height, stem diameter and leaf size in the early growth pedod, and raised tobacco yield, output value and the proportion of high grade leaf: With the increase of biochar dosage, tobacco agronom~ traits were significantly improved, and yield, output value and proportion of high-grade tobacco leaves also increased significantly, and the highest tobacco yield and output value occurred at the dosage of 900 kg/hm2. Agronomic traits of tobacco leaves with the application of rice husk char and wheat straw char were significantly better than those with the application of peanut shell char, appli- cation of rice husk char was more conducive to the development of leaves in the vigorous pedod and stems in the squaring period, but straw char was beneficial to improvement of plant height and leaf number in the vigorous period and leaf growth in the squaring period, and application of rice husk char had the best effect on the increases of yield and output value of tobacco leaves. [Conclusion] Application of biochar is an effective measure forimproving tobacco-planting soil and promoting the growth and development of tobacco in Hanzhong, biochar application amount should be controlled at about 600-900 kg/hm2, and rice husk char is the preferred choice as soil improvement material.展开更多
文摘The effect of functionalized graphene on the growth and development of Vicia faba L.was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil.Seedlings of V.faba planted in this peat soil were treated with either distilled water(CK)or 25 mg·L^(−1)(G25)of functionalized graphene solution.Results showed that the height and root length of V.faba seedlings in the G25 group were significantly larger than those in CK group.The microbial com-munity was analyzed by amplifying and sequencing the 16S rRNA gene V_(3)-V_(4) region of bacteria and internal transcribed spacer re-gion of fungi in rhizosphere soil using Illumina MiSeq technology.Alpha and beta diversity analysis indicated that functionalized graphene increased the richness and diversity of bacteria and fungi in the V.faba rhizosphere peat soil.The abundances of three ni-trogen cycling-related bacteria,Hydrogenophaga,Sphingomonas and Nitrosomonadaceae,were also altered after treatment with the functionalized graphene.The relative abundance of Basilicum,related to soil phosphorus solubilization,decreased in the fungal com-munity,while the relative abundance of Clonostachys and Dimorphospora,which exhibited strong biological control over numerous fungal plant pathogens,nematodes and insects,increased in the soil after functionalized graphene treatment.Redundancy analysis re-vealed that the potential of hydrogen(pH),organic matter,and total phosphorus contributed the most to the changes in bacterial and fungal community composition in the rhizosphere soil.Overall,our findings suggested that the addition of functionalized graphene altered the relative abundances of nitrogen and phosphorus cycling-related microorganisms in peat soil,promoting changes in the physicochemical properties of the soil and ultimately leading to the improved growth of V.faba plants.
文摘Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process. In this work, we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge. Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g., flocculating ability, zeta-potential, hydrophobicity, and extracellular polymeric substances constituents). Moreover, the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.
基金Supported by Scientific and Technological Development Project of Tobacco Industry in Helongjiang Province(HYK[2015]59)~~
文摘This study was conducted to study the feasibility of biochar in soil im- provement and tobacco quality. The black soil in NinganCountry of Mudanjiang was used as the material in this study, and the effects of biochar on tobacco-planting soil C/N, soil microorganisms, the development of tobacco, and chemical compo- nents and neutral aroma components in flue-cured tobacco werestudied. The results showed that the application of biochar at a rate of 1 800 kg/hm2 could increase soil C/N by 31.79%, and the quantity of actinomycetes in the soil was 3.8 times as much as that in control. The growth wasobviously better after biochar application, plant height and effective leaf number were significantly higher than those ofcontrol, but total sugar and nicotine were not significantly different. The application of biochar at a rate of 1 200 kg/hm2 increased the potassium content by 11%, the application of biochar at a rate of 2 400 kg/hm2 improved total sugar content by 5.40%, and the application of biochar at a rate of 1 800 kg/hm2 made the tobacco solanone content 1.97 times as that of control. Comprehensive studies showed that the application of biochar 1 200-1 800 kg/hm2 could improvesoilenvironment, and promote tobacco growth and quality.
基金Supported by National Modern Industrial System of Cassava pestand Disease Survey and Early-warning Research on its Important External Harmful Organisms(nycytx-17-37)Scientists Post Projectin Cassava Technology System of a service Industry from Ministry ofAgriculture(nyhyzx07-013-5)~~
文摘[Objective] The research aimed to isolate and identify the anthracnose pathogen of Cassava and study its biological charcteristics.[Method] Two isolates of anthracnose (CCGHN01 and CCGHN03) in Cassava were isolated from the diseased leaves collected from Hainan of China.They were identified through the morphological observation of conidia and ITS sequence analysis.And the morphological characteristics were studied.[Result] The morphological observation of conidia and ITS sequence analysis indicated that the two isolates were Colletotrichum gloeosporioides.The morphological characteristics study results showed that optimum medium for the growth of two strains was PSA,the optimum temperatures were 26 ℃ and 30 ℃ respectively,the optimum pH was 8.0,the optimum light conditions were alternative light and dark and complete darkness respectively.For the conidia germination of two strains,the optimum temperatures were 28 ℃ and 30 ℃ respectively and the lethal temperature was 55 ℃ remaining 10 min.[Conclusion] The research laid the foundation for further control of anthracnose in Cassava.
基金Supported by Science and Technology Planning Project of Guangdong Province(2012A020100004)~~
文摘[Objective] To investigate the effect of biochar on the chemical fertility of vegetable soil. [Method] By pot experiments, the effect of biochar the soil pH and the content of organic matter, available nitrogen, readily available potassium, avail- able phosphorus, water-soluble phosphorus, exchangeable calcium and magnesium were investigated. The experiment contained five treatments, i.e., CK (no biochar), T1 (0.10% biochar), T2 (0.25% biochar), T3 (0.50% biochar) and T4 (1.00% biochar). [Result] As the application amount of biochar increases in the treatments, the soil pH, the content of organic matter and readily available potassium ascended significantly, with a trend of T4〉T3 〉T2〉TI〉CK; the contents of available phospho- rus and water-soluble phosphorus first show upward trend then downward trend, with T3 being the highest and CK the lowest; the contents of available nitrogen and exchangeable magnesium did not assume obvious change; compared with control, an appropriate amount of char could significantly increase the content of exchangeable calcium. [Conclusion] Biochar can significantly improve the chemical fertility of vegetable soil, and the application amount in T3 (0.50% biochar) brings the best effects.
基金Supported by Major Science and Technology Program for Water Pollution Control and Treatment of China(2012ZX07102-003)~~
文摘[Objective] This study aimed to provide the basis for scientific and rea- sonable application of nitrogen fertilizer and control Of agricultural non-point source pollution in vegetable-growing area at Chaihe catchment of Dianchi Lake. [Method] A pot experiment was carried out to compare the loss of nitrogen via ammonia volatilization and nitrogen leaching after application of biochar coated urea (BCU) and common urea (Urea) with different nitrogen rates (0 mg N/kg soil, 400 mg N/kg soil, 320 mg N/kg soil and 280 mg N/kg soil). [Result] The results indicated that the amount of nitrogen loss was proportional to nitrogen applied rate. Leaching nitrogen was higher than ammonia volatilization. Compare with Urea treatments, ammonia volatilization and nitrogen leaching losses were significantly lower in BCU treatments at the same nitrogen application rate. At the nitrogen application rate of 320 and 280 mg N/kg soil, nitrogen loss, ammonia volatilization and leaching nitrogen was 43.5%-45.5%, 3.7%-21.7% and 49.8%-52.1% lower in BCU treatments than in Ure- a treatments, respectively. [Conclusion] The application of BCU could minimize nitro- gen loss by reducing nitrate leaching loss. It can be concluded that the low nitrogen application rate combined with BCU have a practical influence on controlling the risk of nitrogen pollution in Dianchi Lake.
基金Project(2011467062) supported by National Scientific Research Project of Welfare(Environmental) Industry,ChinaProject(50925417) supported by China National Funds for Distinguished Young Scientists+1 种基金Project(50830301) supported by the National Natural Science Foundation of ChinaProject(CX2010B121) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Activated carbon after saturated adsorption of EDTA was used as particle electrode in a three-dimensional electrode reactor to treat EDTA-containing wastewater.Electrochemical method was used to regenerate activated carbon after many times of electrolysis.Based on the analysis of infrared spectra of activated carbon after adsorption and repeated electrolysis,EDTA was degraded into glycine,and then non-catalytic activated associated complex was formed with N—H bond on the activated carbon.The catalytic ability of the activated carbon vanished and the EDTA degradation efficiency was dropped.Activated carbon could be effectively regenerated by electrochemical method in the three-dimensional reactor.Effects of electric current,conductivity and pH on activated carbon regeneration were investigated,and the optimum conditions were concluded as follows:100-300 mA of current intensity,1.39 mS/cm of electric conductivity,60 min of electrolysis time and pH 6.0-8.0.Under the optimized conditions,the activity of the activated carbon can be recovered and the residual total organic carbon(TOC) was below 10 mg/L(the initial TOC was 200 mg/L) in the three-dimensional electrode reactor.
基金Supported by National Key Technology Research and Development Program(2013BAD11B03)National Natural Science Foundation(31272249,31071865,41505100)~~
文摘This experiment was conducted in Xinxiang, Henan from June 2013 to June 2014. Total four treatments were designed including farmers ’ common practice (F, 250 kg/hm^2), 80% F (LF, 200 kg/hm^2), 80% F+biochar (LFC) and no fertilizer (CK) to measure the dynamic emissions of CO2 and N2O from a summer maize-winter wheat field by static chamber-gas chromatography method. The results showed that the soil CO2 emission was 21.8-1 022.7 mg/(m^2·h), and was mainly influenced by soil temperature and moisture content. During the growth of summer maize, the soil CO2 emission was more significantly affected by soil moisture con-tent; and in winter wheat growing season, it was more significantly affected by soil temperature in the top 5 cm. The LF and LFC treatments significantly reduced the soil cumulative CO2 emission, especial y during the growth of winter wheat. Fertiliza-tion and irrigation were the main factors influencing the soil N2O emission. The soil N2O emission during the fertilization period accounted for 73.9%-74.5% and 40.5%-43.6% of the soil cumulative N2O emission during the summer maize-and winter wheat-growing season, respectively. The peak of emission fluxes was determined by fertilization amount, while the occurrence time of emission peak and emission re-duction effect were influenced by irrigation. The LF treatment reduced the soil cu-mulative N2O emission by 15.7%-16.8% and 18.1%-18.5% during the growth period of summer maize and winter wheat, respectively. Reduced nitrogen fertilization is an effective way for reducing N2O emission in intensive high-yielding farmland. Under a suitable nitrogen level (200 kg/hm^2), the application of biochar showed no significant effect on the soil N2O emission in a short term. The N2O emission factors of the L and LF treatments were 0.60% and 0.56%, respectively. ln the intensive high-yield-ing farmland of North China, reducing the nitrogen application amount is an appro-priate measure to mitigate greenhouse gas emissions without crop yield loss.
文摘[Objective] With a rice variety "Long Rice 11" as a test cultivar,an experiment of raising rice seedlings with the new substrata prepared from biochar,and maize stalks,rice husks,organic fertilizer,turf,zeolite,fine river sand and arable layer soil by mixing according to certain volume proportions was caried out,in order to investigate the physical and chemical properties of different organic-material seedling-raising substrata and the effects of these substrata on seedling growth.[Method] The experiment raised seedlings in greenhouses and adopted randomized block arrangement.[Result] The substratum of biochar mixed with maize stalks and rice husks could increase the maximum water-holding capacity of the substratum,reduce the volume weight of the substratum and improve the buffering effect of the substratum.It also had great effects on the contents of alkali-hydrolyzale nitrogen and rapidly available potassium in the substratum,and could improve the root number and substantial degree of rice seedlings.[Conclusion] Biochar with maize stalks and rice husks(the treament HC) is the optimal substratum in this study.
基金Supported by the Jiangsu Provincial Fund for Self-dependent Innovation of AgriculturalTechnology(CX10209)Special Fund for the Technology System Construction ofModern Pear Industry(nycytx-29-09)National"948"Project(2010-C18)~~
文摘[Objective] This study aimed to explore the biological characteristics of Col etotrichum gloeosporioides in pears. [Method] Twenty-five C. gloeosporioides strains were isolated and identified from the diseased samples. Their pathogenicity was identified by inoculating the surface of punctured pears with fungal discs. The effects of different temperatures, pH values, carbon sources and nitrogen sources on the growth of C. gloeosporioides mycelia were explored by incubating fungal discs on the center of plates. [Result] Among the twenty-five C. gloeosporioides strains, three had strong pathogenicity, and eighteen had intermediate pathogenicity, and four strains had weak pathogenicity. Those highly-pathogenic strains had darker colonies, with dense mycelia, whereas those lowly-pathogenic ones had white colonies, with sparse mycelia. Those with fast-growing colonies showed strong pathogenicity, while those with slowly-growing colonies displayed weak pathogenicity. There was no relationship between conidia yield and pathogenicity. The optimum temperature for the growth of C. gloeosporioides mycelia was 25-30 ℃, and the optimum pH was 5.0-7.0. C. gloeosporioides could make use of various carbon sources (monosaccharide and disaccharide), inorganic and organic nitrogen sources, and the optimal carbon source and nitrogen source were sucrose and beef extract, respectively. [Conclusion] Our study benefits further understanding of C. gloeospori-oides and helps to control pear anthracnose more effectively.
基金Projects (50832004, 51202194) supported by National Natural Science Foundation of ChinaProject (11-BZ-2012) supported by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China+1 种基金Project (T201107) supported by Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, ChinaProject (B08040) supported by 111 Project of China
文摘A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C/C composites were isolated and characterised by the size distribution and morphology. The evolvement of wear particles in the hip joint simulator was proposed. The results show that the wear particles from two kinds of C/C composites have a size ranging from submicron to tens of micrometers. The wear particles have various morphologies including broken fiber, fragment fiber, slice pyrolytic carbon and spherical pyrolytic carbon. C/C composites with needled carbon cloth preforms have larger size range and more broken fiber particles and slice pyrolytic carbon particles in comparison with C/C composites with carbon felt preforms. The evolvement of pyrolytic carbon particles is caused by surface regularization, whereas, the evolvement of carbon fiber particles is related to stress direction in the hip joint simulator.
文摘Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build the neural network model by which the expected outflow CODM can be acquired under the inflow CODM condition. Results The improved self-organized learning algorithm can assign the centers into appropriate places , and the RBF network's outputs at the sample points fit the experimental data very well. Conclusion The model of ozonation /BAC system based on the RBF network am describe the relationshipamong various factors correctly, a new prouding approach tO the wate purification process is provided.
基金Supported by Jiangsu Agricultural Science and Technology Support Program(BE2012378)Six Talents Peaks Program of Jiangsu Province in 2013(2013-NY-001)Jiangsu Agricultural Scientific and Technological Self-innovation Foundation[CX(11)2018]~~
文摘[Objective] The aim was to explore biocontrol approaches of strawberry an-thracnose. [Method] With hyphal growth inhibition method, bacteriostatic activities of Bacil us subtilis and Osthole on strawberry anthracnose were measured and field test was carried out. [Result] The results show that both of Bacil us subtilis and Osthole were of higher bacteriostatic activity on strawberry anthracnose, and the values of EC50 were 0.007 5 mg/L and 1.063 0 ml/L, respectively. The result of field test show that the prevention effects of Bacil us subtilis (600-750 g/hm2) and 25% prochloraz (600 ml/hm2) both achieved higher than 76%, 7 and 14 d after triple medical applica-tions with rains sheltered or in open field. But the effects were of extremely signifi-cant differences with that of Osthole (1 800-2 700 ml/hm2) (P〈0.01). [Conclusion] Bacil us subtilis can be made use of for control ing strawberry anthracnose.
基金Supported by Circular of the Ministry of Agriculture on Approval of the First Batch of the National Demonstration Zones for Modern Agriculture(NJF[2010]22)Fundamental Research Funds for the Central Universities(XDJK2015C057,SWU114046)~~
文摘In order to mitigate the occurrence and damage of cowpea anthracnose and reduce the chemical pesticide consumption, residue and environmental pollution, the methods of forecasting, randomized block design and statistical analysis were conducted to study the control effect of biopesticide chitosan, biochemical compound Prochloraz-Chitosan and chemical pesticides difenoconazole and thifluzamide by field efficacy trials. The results showed that under serious occurrence of anthracnose in autumn greenhouse cowpea, when the 2% chJtosan AS (2 250 g/hm^2), 46% Prochloraz-Chitosan EW (450 g/hm^2), 10% difenoconazole WG (900 g/hm^2, CK) or 24% thifluzamide SC (360 ml/hm^2) were applied three times with an interval of 5-8 d, the control efficiency on day 7, 14 and 20 reached 83%, 78% and 73%, respectively. No significant difference was found in control efficiency among the four kinds of agents. These four kinds of agents, especially chitosan and Prochloraz-Chitosan, could be used as ideal agents for controlling anthracnose, as well as for modern agricultural demonstration zones, pollution-free agricultural products, green agricultural products and organic agricultural products,thereby meeting the develop- ment needs of 'modern agriculture, green agriculture, organic agriculture and ecological agriculture.
基金Project(2019YFC1803601)supported by the National Key Research and Development Program of ChinaProject(41771512)supported by the National Natural Science Foundation of ChinaProject(2018RS3004)supported by Hunan Science&Technology Innovation Program,China。
文摘Iron-modified biochar(FeOS)is known to be effective at immobilization of arsenic(As)in soils.A pot experiment was conducted to investigate the effects of FeOS on As availability and ttransportation in the soil-rice system at different growth stages of rice with different pollution levels.The results showed that Fe concentration decreased and As concentration increased in paddy soils with the FeOS addition,especially in 120 mg/kg As treatment,the As concentration decreased by 16.46%and 30.56%at the maturity stage with 0.5%and 1%FeOS additions,respectively.Compared with the control,the application of FeOS reduced the arsenic content in rice tissues and increased the biomass,with the root biomass increased by 12.68%and the shoot biomass was increased by 8.94%with the addition of 1%FeOS.This may be related to the promotion of iron plaque formation and the transformation of microbial community structure in FeOS treatments,in accordance with the result of gene abundance and Fe/As contents of iron plaque in the study.This study is expected to provide further support and theoretical basis for the application of FeOS in the remediation of As contaminated paddy soil.
基金Project(21707056)supported by the National Natural Science Foundation of ChinaProject(20192BAB203019)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘Four sewage sludge(SS)feedstocks with distinct properties were converted into biochars by pyrolysis at 300−700℃,in order to clarify the effects of the composition difference of SS feedstocks.The yields of biochars present a positive correlation with the contents of ash in SS.Notedly,the contents of organic matter(OM)in SS largely determine the quality of biochars.SS feedstocks with high content of OM are more likely to form stable biochars with higher aromaticity/carbonization degree,and the formed biochars possess higher calorific values.The contents of residual OM in biochars derived from SS feedstocks with low content of OM likely fail to meet the needs of soil improvement(10 wt.%).Most of heavy metals(HMs)existing in raw SS are remained in biochars after pyrolysis.The biochar produced from SS feedstocks with high content of HMs usually contains higher contents of HMs.Surprisingly,the leachability of HMs in biochars is all weakened to some extent compared to raw SS.In addition,the biochars show higher thermal stability and pH values,and P/K nutrients are enriched in biochars.The biochars prepared from four SS feedstocks exhibit different adsorption ability of methylene blue,especially at low dosage of biochar.
基金Supported by Major Project of Shaanxi Tobacco Corporation in 2013:"Research on Key Technique for Soil Improvement and Application in Tobacco-Growing Area of Hanzhong"Major Project of Henan Tobacco Corporation(HYKJ201215,HYKJ201315)~~
文摘[Objective] This study was to investigate the effects of different biochar dosages and trpes on growth, yield and output value of flue-cured tobacco in Hanzhong. [Methods] In May-September of 2013, Xiaonanhai Town, Nanzheng County, Hanzhong City, a field experiment was carded out to study the effects of- biochardosage and type on tobacco agronomic traits, yield and output value in each growth period. [Results] Biochar application significantly increased plant height, stem diameter and leaf size in the early growth pedod, and raised tobacco yield, output value and the proportion of high grade leaf: With the increase of biochar dosage, tobacco agronom~ traits were significantly improved, and yield, output value and proportion of high-grade tobacco leaves also increased significantly, and the highest tobacco yield and output value occurred at the dosage of 900 kg/hm2. Agronomic traits of tobacco leaves with the application of rice husk char and wheat straw char were significantly better than those with the application of peanut shell char, appli- cation of rice husk char was more conducive to the development of leaves in the vigorous pedod and stems in the squaring period, but straw char was beneficial to improvement of plant height and leaf number in the vigorous period and leaf growth in the squaring period, and application of rice husk char had the best effect on the increases of yield and output value of tobacco leaves. [Conclusion] Application of biochar is an effective measure forimproving tobacco-planting soil and promoting the growth and development of tobacco in Hanzhong, biochar application amount should be controlled at about 600-900 kg/hm2, and rice husk char is the preferred choice as soil improvement material.