Black carbon (BC) aerosol, accounting for a minor fraction of atmospheric aerosols, is attracting increased attentio1 due to its impact on air quality, human health, and climate change. Focusing on BC emission reduc...Black carbon (BC) aerosol, accounting for a minor fraction of atmospheric aerosols, is attracting increased attentio1 due to its impact on air quality, human health, and climate change. Focusing on BC emission reduction, this paper give1 a brief introduction to the sources and global distribution of BC. Along with the decrease of BC emissions from sue1 actions as the reduction of global greenhouse gases (GHGs) and regulating local air quality, it also highlights othet BC reduction approaches such as control and improvement of combustion conditions, the elimination of open biomas burning, and the sequestration of BC by biomass pyrolysis. Finally, it is stressed that at this moment there is no enougt reason to push BC reduction into any climate change related negotiations, although BC has been included in some o so-called win-win reduction targets for the quick response to both climate and non-climate appeals.展开更多
The aim of the present study is to develop the biomass furnace combustor which can effectively employ four unused biomasses, i.e., wood bark, wood branch, bamboo, and grass as a fuel. Emphasis is placed on the combust...The aim of the present study is to develop the biomass furnace combustor which can effectively employ four unused biomasses, i.e., wood bark, wood branch, bamboo, and grass as a fuel. Emphasis is placed on the combustion gas components and combustion gas temperature in the combustor. It is found from the study that: (1) Four unused biomasses can take plate self combustion and the stable combustion yield; (2) Different combustion temperature distribution appears in combustor and is affected by each biomass; (3) The concentrations of nitrogen oxide and sulfur oxides are lower than the discharge standard value; (4) Higher thermal efficiency yields for bark, bamboo and grass.展开更多
基金国家自然科学基金项目 ( 4 9975 0 2 640 3 180 0 1) +1 种基金Research Grant Council of HongKong (PolyU 5 0 61/99E)The Hong Kong Polytechnic Uni versity (G YW 5 8)共同资助
基金co-supported by China 973 project of MOST(2011CB403401)China Postdoctoral Science Foundation(20080440463,200902157)
文摘Black carbon (BC) aerosol, accounting for a minor fraction of atmospheric aerosols, is attracting increased attentio1 due to its impact on air quality, human health, and climate change. Focusing on BC emission reduction, this paper give1 a brief introduction to the sources and global distribution of BC. Along with the decrease of BC emissions from sue1 actions as the reduction of global greenhouse gases (GHGs) and regulating local air quality, it also highlights othet BC reduction approaches such as control and improvement of combustion conditions, the elimination of open biomas burning, and the sequestration of BC by biomass pyrolysis. Finally, it is stressed that at this moment there is no enougt reason to push BC reduction into any climate change related negotiations, although BC has been included in some o so-called win-win reduction targets for the quick response to both climate and non-climate appeals.
文摘The aim of the present study is to develop the biomass furnace combustor which can effectively employ four unused biomasses, i.e., wood bark, wood branch, bamboo, and grass as a fuel. Emphasis is placed on the combustion gas components and combustion gas temperature in the combustor. It is found from the study that: (1) Four unused biomasses can take plate self combustion and the stable combustion yield; (2) Different combustion temperature distribution appears in combustor and is affected by each biomass; (3) The concentrations of nitrogen oxide and sulfur oxides are lower than the discharge standard value; (4) Higher thermal efficiency yields for bark, bamboo and grass.