Porous titanium has been shown to exhibit desirable properties as biomedical materials. In view of the load-bearing situation, the mechanical properties and pore structure deformation behaviour of porous titanium were...Porous titanium has been shown to exhibit desirable properties as biomedical materials. In view of the load-bearing situation, the mechanical properties and pore structure deformation behaviour of porous titanium were studied. Porous titanium with porosities varying from 36%-66% and average pore size of 230 μm was fabricated by powder sintering. Microstructural features were characterized using scanning electron microscopy. Uniaxial compression tests were used to probe the mechanical response in terms of elastic modulus and compressive strength. The mechanical properties of porous titanium were found to be close to the those of human bone, with stiffness values ranging from 1.86 to 14.7 GPa and compressive strength values of 85.16-461.94 MPa. The relationships between mechanical properties and relative densities were established, and the increase in relative density showed significant effects on mechanical properties and deformations of porous titanium. In a lower relative density, the microscopic deformation mechanism of porous titanium was yielding, bending and buckling of cell walls, while the deformation of yielding and bending of cell walls was observed in the porous titanium with higher relative density.展开更多
Thermoplastic starch is a kind of modified starch produced by mixing starch with additives and processing the mixture in an extruder. The mechanical properties, including tensile strength and elongation at break, biod...Thermoplastic starch is a kind of modified starch produced by mixing starch with additives and processing the mixture in an extruder. The mechanical properties, including tensile strength and elongation at break, biodegradability and rheological properties were studied. Glycerol and urea, to some extent, can both decrease the tensile strength and increase percentage elongation at break, because the former acts as a plasticizer and the latter can break down interactions among starch macromolecules. Thermoplastic starch shows thermoplasticity and its melt behaves as a pseudoplastic liquid at a low shear rate. Its biodegrading extent is slightly higher than that of native starch. The molecular weight of starch displays a decreasing tendency after thermoplastic modification.展开更多
Mg-2.7Nd-0.2Zn-0.4Zr (mass fraction, %) alloy was designed for degradable biomedical material. The ingots of the alloy were solution treated and then hot extruded. The extruded rods were heat treated with aging trea...Mg-2.7Nd-0.2Zn-0.4Zr (mass fraction, %) alloy was designed for degradable biomedical material. The ingots of the alloy were solution treated and then hot extruded. The extruded rods were heat treated with aging treatment, solution treatment and solution+aging treatment, respectively. Microstructures of the alloy were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Mechanical properties at room temperature were tested. In vitro degradation behavior of the alloy immersed in simulated body fluid was measured by hydrogen evolution and mass loss tests. The degradation morphologies of the alloy with and without degradation products were observed by SEM. The results show that the grains grow apparently after solution treatment. Solution treatment improves the elongation of as-extruded alloy significantly and decreases the strength, while aging treatment improves the strength and reduces the elongation of the alloy. The yield ratio is reduced by heat treatment. The in vitro degradation results of the alloy show that solution treatment on the as-extruded alloy results in a little higher degradation rate and aging treatment on the alloy can reduce degradation rate slightly.展开更多
The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spe...The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spectroscope, and hot-dip aluminized experiments. The results show that the intermetallic layer is composed of major Fe2Al5 and minor FeAl3. The Al-Fe-Si ternary phase, rl/rg, is formed in the Fe2Al5 layer. The tongue-like morphology of the Fe2Als layer becomes less distinct and disappears finally as the content of Si in aluminum bath increases. Si in the bath improves the prohibiting ability to the growth of Fe2Als and FeAl3. When the contents of Si are 0, 0.5%, 1.0%, 1.5%, 2.0% and 3.0%, the activation energies of Fe2Al5 are evaluated to be 207, 186, 169, 168, 167 and 172 kJ/mol, respectively. The reduction of the activation energy might result from the lattice distortion caused by Si atom penetrating into the Fe2Al5 phase. When Si atom occupies the vacancy site, it blocks easy diffusion path and results in the disappearance of tongue-like morphology.展开更多
Magnesium alloys have good biocompatibility, but their mechanical properties and corrosion resistance may not be satisfied for using as degradable materials within bone due to its high corrosion rate in the physiologi...Magnesium alloys have good biocompatibility, but their mechanical properties and corrosion resistance may not be satisfied for using as degradable materials within bone due to its high corrosion rate in the physiological environment. Nano β-TCP particles were added into Mg-Zn-Zr alloy to improve its microstructure and the properties. As-extruded Mg-3Zn-0.8Zr alloy and Mg-3Zn-0.8Zr/xβ-TCP (x=0.5%, 1.0% and 1.5%) composites were respectively fabricated. The grains of Mg-Zn-Zr/β-TCP composites were significantly refined. The results of the tensile tests indicate that the ultimate tensile strength and the elongation of composites were improved with the addition of β-TCP. The electrochemical test result in simulation body fluid shows that the corrosion resistance of the composites was strongly enhanced comparing with that of the alloy. The corrosion potential of Mg-3Zn0.8-Zr/1.0β-TCP composite is 1.547 V and its corrosion current density is 1.20×10 6 A/cm 2 .展开更多
Biodegradable wires,able to provide load-bearing support for various biomedical applications,are the novel trends in current biomaterial research.A thin 99.92%Mg wire with a diameter of 250μm was prepared via direct ...Biodegradable wires,able to provide load-bearing support for various biomedical applications,are the novel trends in current biomaterial research.A thin 99.92%Mg wire with a diameter of 250μm was prepared via direct extrusion with an extreme reduction ratio of 1:576.The total imposed strain in a single processing step was 6.36.Extrusion was carried out at elevated temperatures in the range from 230 to 310℃and with various ram speeds ranging from^0.2 to^0.5 mm/s.The resulting wires show very good mechanical properties which vary with extrusion parameters.Maximum true tensile stress at room temperature reaches^228 MPa and ductility reaches^13%.The proposed single-step direct extrusion can be an effective method for the production of Mg wires in sufficient quantities for bioapplications.The fractographic analysis revealed that failure of the wires may be closely connected with inclusions(e.g.,Mg O particles).The results are essential for determining the optimal processing conditions of hot extrusion for thin Mg wire.The smaller grain size,as the outcome of the lower extrusion temperature,is identified as the main parameter affecting the tensile properties of the wires.展开更多
In order to solve the friction,wear and lubrication problems of titanium,a series of TaN/ployether−ether−ketone(PEEK)coatings were developed by electrophoretic deposition,and the effects of TaN nanoparticles on the mi...In order to solve the friction,wear and lubrication problems of titanium,a series of TaN/ployether−ether−ketone(PEEK)coatings were developed by electrophoretic deposition,and the effects of TaN nanoparticles on the microstructure,mechanical properties and tribological performance of coatings were explored.Results manifest that the introduction of TaN nanoparticles into PEEK coatings could improve the deposition efficiency,enhance the resistant deform capacity,increase the hardness,elastic modulus and adhesive bonding strength.Compared with the pure PEEK coating,the friction coefficient of P-TN-3 was greatly reduced by 31.25%.The wear resistance of P-TN-3 was also improved in huge boost,and its specific wear rate was decreased from 9.42×10^(−5) to 1.62×10^(−5) mm^(3)·N^(−1)·m^(−1).The homogeneous composite TaN/PEEK coatings prepared by electrophoretic deposition were well-adhered to the titanium alloy substrate,TaN nanoparticles could improve the strength of PEEK coating,and provide wear-resistance protection for titanium alloys.展开更多
The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on mic...The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on microstructure andmechanical properties were investigated using the OM,XRD,TEM,Vicker hardness tester and universal material testing machine.Results indicated that the alloy showed multiple plastic deformation mechanisms,including stress-inducedα'martensite(SIMα')transformation,dislocation slipping and deformation twins.With the increase of cold deformation reduction,the tensile strength andhardness increased owing to the increase of dislocation density and grain refinement,and the elastic modulus slightly increasedowing to the increase of SIMα'phase.The90%cold deformed alloy exhibited a great potential to become a new candidate forbiomedical applications since it possessed low elastic modulus(56.2GPa),high tensile strength(1260MPa)and highstrength-to-modulus ratio(22.4×10-3),which are superior than those of Ti-6Al-4V alloy.展开更多
Six tibias removed from 30-40 years old males, who died in an accident for in less than 12 hours, were osteotomized at one-third supra-medium segment. They were fixed by an unilateral adjustable external fixer (UAEF),...Six tibias removed from 30-40 years old males, who died in an accident for in less than 12 hours, were osteotomized at one-third supra-medium segment. They were fixed by an unilateral adjustable external fixer (UAEF), to be used as a model of external fixation of tibial fracture (MEFTF). The compression. tension, torsion, antero-posterior and lateral bending strength, and the strength for vertically extracting the pins from the tibia were determined in the MEFTF. Within a certain range of load, the correlation of strain to stress was basically a linear relationship. These data provide a theoretical basis of biomechanics for the improvement of UAEF and for early exercises of fracture patients, such as extend-bending of the joint.raising the limb and walking with a walking stick.展开更多
Replacement of volatile organic compounds (VOCs) by greener or more environmentally sustainable solvents is becoming increasingly important due to the increasing health and environmental concerns as well as economic...Replacement of volatile organic compounds (VOCs) by greener or more environmentally sustainable solvents is becoming increasingly important due to the increasing health and environmental concerns as well as economic pressures associated with VOCs. Solvents that are derived from biomass, namely bio-derived solvents, are a type of green solvent that have attracted intensive investigations in recent years because of their advantages over con- ventional VOCs, such as low toxicity, biodegradability and renewability. This review aims to summarize the use of bio-derived solvents in solvent extraction applications, with special emphasis given to utilization of biodiesels and terpenes. Compared with the conventional VOCs, the overall performance of these bio-derived solvents is comparable in terms of extraction yields and selectivity for natural product extraction and no difference was found for metal extraction. To date most researchers have focused on laboratory scale thermodynamics studies. Future work is required to develop and test new bio-derived solvents and understand the kinetic performance as well as solvent extraction nilnt nlant studies.展开更多
Mg?1Zn?0.5Ca alloys were prepared by traditional steel mould casting and water-cooled copper mould injection casting at higher cooling rate. Microstructure, mechanical properties and bio-corrosion resistance of two al...Mg?1Zn?0.5Ca alloys were prepared by traditional steel mould casting and water-cooled copper mould injection casting at higher cooling rate. Microstructure, mechanical properties and bio-corrosion resistance of two alloys were contrastively investigated. Grain size reduces remarkably and microstructure becomes homogenous when raising cooling rate. The bio-corrosion behaviour in 3.5% sodium chloride solution (3.5% NaCl) and Hank’s solution at 37°C was investigated using electrochemical polarization measurement and the results indicate that the alloy prepared at higher cooling rates has better corrosion resistance in both types of solution. Further mass loss immersion test in Hank’s solution reveals the same result. The reason of corrosion resistance improvement is that raising cooling rate brings about homogeneous microstructure, which leads to micro-galvanic corrosion alleviation. The tensile test results show that yield strength, ultimate tensile strength and elongation are improved by raising cooling rate and the improvement is mainly due to grain refinement.展开更多
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide.The recurrence of HCC after curative treatments is currently a major hurdle.Identification of subsets of patients with distinct progn...Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide.The recurrence of HCC after curative treatments is currently a major hurdle.Identification of subsets of patients with distinct prognosis provides an opportunity to tailor therapeutic approaches as well as to select the patients with specific sub-phenotypes for targeted therapy.Thus,the development of gene expression profiles to improve the prediction of HCC prognosis is important for HCC management.Although several gene signatures have been evaluated for the prediction of HCC prognosis,there is no consensus on the predictive power of these signatures.Using systematic approaches to evaluate these signatures and combine them with clinicopathologic information may provide more accurate prediction of HCC prognosis.Recently,Villanueva et al developed a composite prognostic model incorporating gene expression patterns in both tumor and adjacent tissues to predict HCC recurrence.In this commentary,we summarize the current progress in using gene signatures to predict HCC prognosis,and discuss the importance,existing issues and future research directions in this field.展开更多
The literature shows that improvements in cognitive performance may be observed following an acute bout of exercise. However, evidence in support of the biological mechanisms of this effect is still limited. Findings ...The literature shows that improvements in cognitive performance may be observed following an acute bout of exercise. However, evidence in support of the biological mechanisms of this effect is still limited. Findings from both rodent and human studies suggest brain-derived neu- rotrophic factor (BDNF) as a potential mechanism of the effect of acute exercise on memory. The molecular properties of BDNF allow this protein to be assessed in the periphery (pBDNF) (i.e., blood serum, blood plasma), making measurements of acute exercise-induced changes in BDNF concentration relatively accessible. Studies exploring the acute exercise--pBDNF--cognitive performance relationship have had mixed findings, but this may be more reflective of methodological differences between studies than it is a statement about the role of BDNE For example, significant associations have been observed between acute exercise-induced changes in pBDNF concentration and cognitive performance in studies assessing memory, and non-significant associations have been found in studies assessing non-memory cognitive domains. Three suggestions are made for future research aimed at understanding the role of BDNF as a biological mechanism of this relationship: 1) Assessments of cognitive performance may benefit from a focus on various types of memory (e.g., relational, spatial, long-term); 2) More finegrained measurements of pBDNF will allow for the assessment of concentrations of specific isoforms of the BDNF protein (i.e., immature, mature); 3) Statistical techniques designed to test the mediating role of pBDNF in the acute exercise-cognitive performance relationship should be utilized in order to make causal inferences.展开更多
Background: Research surrounding the steeplechase is scarce, with most research focusing primarily on how biomechanical factors relate to maintaining running speed while crossing barriers. One area that has not been ...Background: Research surrounding the steeplechase is scarce, with most research focusing primarily on how biomechanical factors relate to maintaining running speed while crossing barriers. One area that has not been well explored is the relationship between biomechanical factors and hurdling economy. The purpose of this study was to investigate how pel:formance times and biomechanical variables relate to hurdling economy during the steeplechase. Methods: This was accomplished by measuring running economy of collegiate and professional steeplechasers while rmming with and without hurdles. Biomechanical measures of approach velocity, takeoff distance, clearance height, and lead knee extension while hurdling, as well as steeplechase performance times were correlated to a ratio of running economy with and without hurdles. Results: While oxygen uptake was 2.6% greater for the laps requiring five barriers, there was no correlation between steeplechase performance time and the ratio of running economy during the hurdle and non-hurdle laps. Results also indicated no correlation between the aforementioned biomechanical variables and ratio of running economy during the hurdle and non-hurdle laps. Conclusion: Increasing approach velocity did not negatively affect running economy. Increased approach velocity is a benefit for maintenance of race pace, but does not hurt economy of movement.展开更多
This article studies whether Aristotle's understanding of magnanimity excludes women. I examine Aristotle's concept of the biological, moral, and intellectual capacities of women in theory and practice. Although Ari...This article studies whether Aristotle's understanding of magnanimity excludes women. I examine Aristotle's concept of the biological, moral, and intellectual capacities of women in theory and practice. Although Aristotle's biology describes key differences between the sexes, it does not exclude women from magnanimity. While the ethical and political writings also note key differences between men and women, they leave the theoretical possibility of attaining magnanimity open. Practically, the lack of leadership opportunities available to actual women may hinder the development of prudence, leading to an inability to achieve complete virtue and hence magnanimity. Thus, if women are unable to be magnanimous, this is due to practical political and familial arrangements, not to innate feminine defects. This finding provides a unique argument for feminine leadership and political participation. Truly exceptional women may need to actively seek out leadership opportunities and political involvement in order to complete their virtue展开更多
基金Project(2012CB619101)supported by the National Basic Research Program of China
文摘Porous titanium has been shown to exhibit desirable properties as biomedical materials. In view of the load-bearing situation, the mechanical properties and pore structure deformation behaviour of porous titanium were studied. Porous titanium with porosities varying from 36%-66% and average pore size of 230 μm was fabricated by powder sintering. Microstructural features were characterized using scanning electron microscopy. Uniaxial compression tests were used to probe the mechanical response in terms of elastic modulus and compressive strength. The mechanical properties of porous titanium were found to be close to the those of human bone, with stiffness values ranging from 1.86 to 14.7 GPa and compressive strength values of 85.16-461.94 MPa. The relationships between mechanical properties and relative densities were established, and the increase in relative density showed significant effects on mechanical properties and deformations of porous titanium. In a lower relative density, the microscopic deformation mechanism of porous titanium was yielding, bending and buckling of cell walls, while the deformation of yielding and bending of cell walls was observed in the porous titanium with higher relative density.
文摘Thermoplastic starch is a kind of modified starch produced by mixing starch with additives and processing the mixture in an extruder. The mechanical properties, including tensile strength and elongation at break, biodegradability and rheological properties were studied. Glycerol and urea, to some extent, can both decrease the tensile strength and increase percentage elongation at break, because the former acts as a plasticizer and the latter can break down interactions among starch macromolecules. Thermoplastic starch shows thermoplasticity and its melt behaves as a pseudoplastic liquid at a low shear rate. Its biodegrading extent is slightly higher than that of native starch. The molecular weight of starch displays a decreasing tendency after thermoplastic modification.
基金supported by the Introducing Talents Funds of Nanjing Institute of Technology,ChinaProject(20100470030) supported by the China Postdoctoral Science Foundation
文摘Mg-2.7Nd-0.2Zn-0.4Zr (mass fraction, %) alloy was designed for degradable biomedical material. The ingots of the alloy were solution treated and then hot extruded. The extruded rods were heat treated with aging treatment, solution treatment and solution+aging treatment, respectively. Microstructures of the alloy were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Mechanical properties at room temperature were tested. In vitro degradation behavior of the alloy immersed in simulated body fluid was measured by hydrogen evolution and mass loss tests. The degradation morphologies of the alloy with and without degradation products were observed by SEM. The results show that the grains grow apparently after solution treatment. Solution treatment improves the elongation of as-extruded alloy significantly and decreases the strength, while aging treatment improves the strength and reduces the elongation of the alloy. The yield ratio is reduced by heat treatment. The in vitro degradation results of the alloy show that solution treatment on the as-extruded alloy results in a little higher degradation rate and aging treatment on the alloy can reduce degradation rate slightly.
基金Project (51071135) supported by the National Natural Science Foundation of ChinaProject (20114301110005) supported by the Ph. D.Programs Foundation of Ministry of Education of ChinaProject (10XZX15) supported by the Science Foundation of Xiangtan University,China
文摘The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spectroscope, and hot-dip aluminized experiments. The results show that the intermetallic layer is composed of major Fe2Al5 and minor FeAl3. The Al-Fe-Si ternary phase, rl/rg, is formed in the Fe2Al5 layer. The tongue-like morphology of the Fe2Als layer becomes less distinct and disappears finally as the content of Si in aluminum bath increases. Si in the bath improves the prohibiting ability to the growth of Fe2Als and FeAl3. When the contents of Si are 0, 0.5%, 1.0%, 1.5%, 2.0% and 3.0%, the activation energies of Fe2Al5 are evaluated to be 207, 186, 169, 168, 167 and 172 kJ/mol, respectively. The reduction of the activation energy might result from the lattice distortion caused by Si atom penetrating into the Fe2Al5 phase. When Si atom occupies the vacancy site, it blocks easy diffusion path and results in the disappearance of tongue-like morphology.
基金Project(51071108)supported by the National Natural Science Foundation of ChinaProject(09JCZDJC18500)supported by the Key Project of Natural Science Foundation of Tianjin,China
文摘Magnesium alloys have good biocompatibility, but their mechanical properties and corrosion resistance may not be satisfied for using as degradable materials within bone due to its high corrosion rate in the physiological environment. Nano β-TCP particles were added into Mg-Zn-Zr alloy to improve its microstructure and the properties. As-extruded Mg-3Zn-0.8Zr alloy and Mg-3Zn-0.8Zr/xβ-TCP (x=0.5%, 1.0% and 1.5%) composites were respectively fabricated. The grains of Mg-Zn-Zr/β-TCP composites were significantly refined. The results of the tensile tests indicate that the ultimate tensile strength and the elongation of composites were improved with the addition of β-TCP. The electrochemical test result in simulation body fluid shows that the corrosion resistance of the composites was strongly enhanced comparing with that of the alloy. The corrosion potential of Mg-3Zn0.8-Zr/1.0β-TCP composite is 1.547 V and its corrosion current density is 1.20×10 6 A/cm 2 .
基金Financial support of the Czech Technical University in Prague in the frame of the project SGS18/191/OHK4/3T/14financial support of the European Regional Development Fund (project CZ.02.1.01/0.0/0.0/16-019/0000778)
文摘Biodegradable wires,able to provide load-bearing support for various biomedical applications,are the novel trends in current biomaterial research.A thin 99.92%Mg wire with a diameter of 250μm was prepared via direct extrusion with an extreme reduction ratio of 1:576.The total imposed strain in a single processing step was 6.36.Extrusion was carried out at elevated temperatures in the range from 230 to 310℃and with various ram speeds ranging from^0.2 to^0.5 mm/s.The resulting wires show very good mechanical properties which vary with extrusion parameters.Maximum true tensile stress at room temperature reaches^228 MPa and ductility reaches^13%.The proposed single-step direct extrusion can be an effective method for the production of Mg wires in sufficient quantities for bioapplications.The fractographic analysis revealed that failure of the wires may be closely connected with inclusions(e.g.,Mg O particles).The results are essential for determining the optimal processing conditions of hot extrusion for thin Mg wire.The smaller grain size,as the outcome of the lower extrusion temperature,is identified as the main parameter affecting the tensile properties of the wires.
基金supported by the National Key Research and Development Program of China (No. 2018YFB2002000)the Guangdong Basic and Applied Basic Research Foundation,China (Nos. 2021A515012271, 2019A1515011220, 2020B1515120027)
文摘In order to solve the friction,wear and lubrication problems of titanium,a series of TaN/ployether−ether−ketone(PEEK)coatings were developed by electrophoretic deposition,and the effects of TaN nanoparticles on the microstructure,mechanical properties and tribological performance of coatings were explored.Results manifest that the introduction of TaN nanoparticles into PEEK coatings could improve the deposition efficiency,enhance the resistant deform capacity,increase the hardness,elastic modulus and adhesive bonding strength.Compared with the pure PEEK coating,the friction coefficient of P-TN-3 was greatly reduced by 31.25%.The wear resistance of P-TN-3 was also improved in huge boost,and its specific wear rate was decreased from 9.42×10^(−5) to 1.62×10^(−5) mm^(3)·N^(−1)·m^(−1).The homogeneous composite TaN/PEEK coatings prepared by electrophoretic deposition were well-adhered to the titanium alloy substrate,TaN nanoparticles could improve the strength of PEEK coating,and provide wear-resistance protection for titanium alloys.
基金Project(20133069014)supported by the National Aerospace Science Foundation of China
文摘The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on microstructure andmechanical properties were investigated using the OM,XRD,TEM,Vicker hardness tester and universal material testing machine.Results indicated that the alloy showed multiple plastic deformation mechanisms,including stress-inducedα'martensite(SIMα')transformation,dislocation slipping and deformation twins.With the increase of cold deformation reduction,the tensile strength andhardness increased owing to the increase of dislocation density and grain refinement,and the elastic modulus slightly increasedowing to the increase of SIMα'phase.The90%cold deformed alloy exhibited a great potential to become a new candidate forbiomedical applications since it possessed low elastic modulus(56.2GPa),high tensile strength(1260MPa)and highstrength-to-modulus ratio(22.4×10-3),which are superior than those of Ti-6Al-4V alloy.
文摘Six tibias removed from 30-40 years old males, who died in an accident for in less than 12 hours, were osteotomized at one-third supra-medium segment. They were fixed by an unilateral adjustable external fixer (UAEF), to be used as a model of external fixation of tibial fracture (MEFTF). The compression. tension, torsion, antero-posterior and lateral bending strength, and the strength for vertically extracting the pins from the tibia were determined in the MEFTF. Within a certain range of load, the correlation of strain to stress was basically a linear relationship. These data provide a theoretical basis of biomechanics for the improvement of UAEF and for early exercises of fracture patients, such as extend-bending of the joint.raising the limb and walking with a walking stick.
基金Support from the Australian Research Council (project ID:LP140100650)
文摘Replacement of volatile organic compounds (VOCs) by greener or more environmentally sustainable solvents is becoming increasingly important due to the increasing health and environmental concerns as well as economic pressures associated with VOCs. Solvents that are derived from biomass, namely bio-derived solvents, are a type of green solvent that have attracted intensive investigations in recent years because of their advantages over con- ventional VOCs, such as low toxicity, biodegradability and renewability. This review aims to summarize the use of bio-derived solvents in solvent extraction applications, with special emphasis given to utilization of biodiesels and terpenes. Compared with the conventional VOCs, the overall performance of these bio-derived solvents is comparable in terms of extraction yields and selectivity for natural product extraction and no difference was found for metal extraction. To date most researchers have focused on laboratory scale thermodynamics studies. Future work is required to develop and test new bio-derived solvents and understand the kinetic performance as well as solvent extraction nilnt nlant studies.
基金Project(20921002)supported by the Innovative Research Groups of the National Natural Science Foundation of ChinaProject(21221061)supported by the National Natural Science Foundation of China+1 种基金Project(201105007)supported by the Science and Technology Program of Jilin Province,ChinaProject(20140325003GX)supported by the Science and Technology Support Project of Jilin Province,China
文摘Mg?1Zn?0.5Ca alloys were prepared by traditional steel mould casting and water-cooled copper mould injection casting at higher cooling rate. Microstructure, mechanical properties and bio-corrosion resistance of two alloys were contrastively investigated. Grain size reduces remarkably and microstructure becomes homogenous when raising cooling rate. The bio-corrosion behaviour in 3.5% sodium chloride solution (3.5% NaCl) and Hank’s solution at 37°C was investigated using electrochemical polarization measurement and the results indicate that the alloy prepared at higher cooling rates has better corrosion resistance in both types of solution. Further mass loss immersion test in Hank’s solution reveals the same result. The reason of corrosion resistance improvement is that raising cooling rate brings about homogeneous microstructure, which leads to micro-galvanic corrosion alleviation. The tensile test results show that yield strength, ultimate tensile strength and elongation are improved by raising cooling rate and the improvement is mainly due to grain refinement.
基金Supported by The National Outstanding Youth Fund,No.81025015Key Project Fund,No.91129301Creative Research Group Fund of the National Natural Science Foundation of China,No.30921006
文摘Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide.The recurrence of HCC after curative treatments is currently a major hurdle.Identification of subsets of patients with distinct prognosis provides an opportunity to tailor therapeutic approaches as well as to select the patients with specific sub-phenotypes for targeted therapy.Thus,the development of gene expression profiles to improve the prediction of HCC prognosis is important for HCC management.Although several gene signatures have been evaluated for the prediction of HCC prognosis,there is no consensus on the predictive power of these signatures.Using systematic approaches to evaluate these signatures and combine them with clinicopathologic information may provide more accurate prediction of HCC prognosis.Recently,Villanueva et al developed a composite prognostic model incorporating gene expression patterns in both tumor and adjacent tissues to predict HCC recurrence.In this commentary,we summarize the current progress in using gene signatures to predict HCC prognosis,and discuss the importance,existing issues and future research directions in this field.
文摘The literature shows that improvements in cognitive performance may be observed following an acute bout of exercise. However, evidence in support of the biological mechanisms of this effect is still limited. Findings from both rodent and human studies suggest brain-derived neu- rotrophic factor (BDNF) as a potential mechanism of the effect of acute exercise on memory. The molecular properties of BDNF allow this protein to be assessed in the periphery (pBDNF) (i.e., blood serum, blood plasma), making measurements of acute exercise-induced changes in BDNF concentration relatively accessible. Studies exploring the acute exercise--pBDNF--cognitive performance relationship have had mixed findings, but this may be more reflective of methodological differences between studies than it is a statement about the role of BDNE For example, significant associations have been observed between acute exercise-induced changes in pBDNF concentration and cognitive performance in studies assessing memory, and non-significant associations have been found in studies assessing non-memory cognitive domains. Three suggestions are made for future research aimed at understanding the role of BDNF as a biological mechanism of this relationship: 1) Assessments of cognitive performance may benefit from a focus on various types of memory (e.g., relational, spatial, long-term); 2) More finegrained measurements of pBDNF will allow for the assessment of concentrations of specific isoforms of the BDNF protein (i.e., immature, mature); 3) Statistical techniques designed to test the mediating role of pBDNF in the acute exercise-cognitive performance relationship should be utilized in order to make causal inferences.
文摘Background: Research surrounding the steeplechase is scarce, with most research focusing primarily on how biomechanical factors relate to maintaining running speed while crossing barriers. One area that has not been well explored is the relationship between biomechanical factors and hurdling economy. The purpose of this study was to investigate how pel:formance times and biomechanical variables relate to hurdling economy during the steeplechase. Methods: This was accomplished by measuring running economy of collegiate and professional steeplechasers while rmming with and without hurdles. Biomechanical measures of approach velocity, takeoff distance, clearance height, and lead knee extension while hurdling, as well as steeplechase performance times were correlated to a ratio of running economy with and without hurdles. Results: While oxygen uptake was 2.6% greater for the laps requiring five barriers, there was no correlation between steeplechase performance time and the ratio of running economy during the hurdle and non-hurdle laps. Results also indicated no correlation between the aforementioned biomechanical variables and ratio of running economy during the hurdle and non-hurdle laps. Conclusion: Increasing approach velocity did not negatively affect running economy. Increased approach velocity is a benefit for maintenance of race pace, but does not hurt economy of movement.
文摘This article studies whether Aristotle's understanding of magnanimity excludes women. I examine Aristotle's concept of the biological, moral, and intellectual capacities of women in theory and practice. Although Aristotle's biology describes key differences between the sexes, it does not exclude women from magnanimity. While the ethical and political writings also note key differences between men and women, they leave the theoretical possibility of attaining magnanimity open. Practically, the lack of leadership opportunities available to actual women may hinder the development of prudence, leading to an inability to achieve complete virtue and hence magnanimity. Thus, if women are unable to be magnanimous, this is due to practical political and familial arrangements, not to innate feminine defects. This finding provides a unique argument for feminine leadership and political participation. Truly exceptional women may need to actively seek out leadership opportunities and political involvement in order to complete their virtue