In this paper, a novel approach termed process goose queue (PGQ) is suggested to deal with real-time optimization (RTO) of chemical plants. Taking advantage of the ad-hoc structure of PGQ which imitates biologic natur...In this paper, a novel approach termed process goose queue (PGQ) is suggested to deal with real-time optimization (RTO) of chemical plants. Taking advantage of the ad-hoc structure of PGQ which imitates biologic nature of flying wild geese, a chemical plant optimization problem can be re-formulated as a combination of a multi-layer PGQ and a PGQ-Objective according to the relationship among process variables involved in the objective and constraints. Subsequently, chemical plant RTO solutions are converted into coordination issues among PGQs which could be dealt with in a novel way. Accordingly, theoretical definitions, adjustment rule and implementing procedures associated with the approach are explicitly introduced together with corresponding enabling algorithms. Finally, an exemplary chemical plant is employed to demonstrate the feasibility and validity of the contribution.展开更多
To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),...To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),crude fat(EE) and crude fiber(CF) concentrations,by spectral reflectance and the first derivative reflectance at fresh leaf scale. The correlations between spectral reflectance and the first derivative transformation and three biochemical variables were analyzed,and a set of estimation models were established using curve-fitting analyses. Coefficient of determination(R2),root mean square error(RMSE) and relative error of prediction(REP) of estimation models were calculated for the model quality evaluations,and the possible opti-mum estimation models of three biochemical variables were proposed,with R2 being 0.891,0.698 and 0.480 for the estimation models of N,EE and CF concentrations,respectively. The results also indicate that using the first derivative reflectance was better than using raw spectral reflectance for all three biochemical variables estimation,and that the first derivative reflectances at 759 nm,1954 nm and 2370 nm were most suitable to develop the estimation models of N,EE and CF concentrations,respectively. In addition,the high correlation coefficients of the theoretical and the measured biochemical parameters were obtained,especially for nitrogen(r=0.948).展开更多
文摘In this paper, a novel approach termed process goose queue (PGQ) is suggested to deal with real-time optimization (RTO) of chemical plants. Taking advantage of the ad-hoc structure of PGQ which imitates biologic nature of flying wild geese, a chemical plant optimization problem can be re-formulated as a combination of a multi-layer PGQ and a PGQ-Objective according to the relationship among process variables involved in the objective and constraints. Subsequently, chemical plant RTO solutions are converted into coordination issues among PGQs which could be dealt with in a novel way. Accordingly, theoretical definitions, adjustment rule and implementing procedures associated with the approach are explicitly introduced together with corresponding enabling algorithms. Finally, an exemplary chemical plant is employed to demonstrate the feasibility and validity of the contribution.
基金Project supported by the National Natural Science Foundation of China (No. 40271078)the Basic Research Program of Science and Technology Department of China (No. 2003DEA2C010-13)
文摘To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),crude fat(EE) and crude fiber(CF) concentrations,by spectral reflectance and the first derivative reflectance at fresh leaf scale. The correlations between spectral reflectance and the first derivative transformation and three biochemical variables were analyzed,and a set of estimation models were established using curve-fitting analyses. Coefficient of determination(R2),root mean square error(RMSE) and relative error of prediction(REP) of estimation models were calculated for the model quality evaluations,and the possible opti-mum estimation models of three biochemical variables were proposed,with R2 being 0.891,0.698 and 0.480 for the estimation models of N,EE and CF concentrations,respectively. The results also indicate that using the first derivative reflectance was better than using raw spectral reflectance for all three biochemical variables estimation,and that the first derivative reflectances at 759 nm,1954 nm and 2370 nm were most suitable to develop the estimation models of N,EE and CF concentrations,respectively. In addition,the high correlation coefficients of the theoretical and the measured biochemical parameters were obtained,especially for nitrogen(r=0.948).