Multiphase emulsions could be used as templates in considerable fields such as coating, optical materials, stan- dard particles and biomedicine. Among various emulsion forming methods, microfluidic technology, with go...Multiphase emulsions could be used as templates in considerable fields such as coating, optical materials, stan- dard particles and biomedicine. Among various emulsion forming methods, microfluidic technology, with good monodispersity, high controllability and operation simplicity, has been widely used in the preparation of multi- phase emulsions with different systems. This review would focus on the basic principles of forming multiphase emulsions, the recent progress in controlling multiphase flow in microfluidics, and preparation of functional ma- terials with microfluidics mainly by the authors' research group. We believe that the review will contribute to the readers in this prospective area very well. ~ 2016 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.展开更多
Objective:The cross-linked production,which was prepared by HA and cross-linking agent STMP,EDC,GP through cross-linking reaction,might be used in drug delivery system(DDS).To ensure the security of clinical applicati...Objective:The cross-linked production,which was prepared by HA and cross-linking agent STMP,EDC,GP through cross-linking reaction,might be used in drug delivery system(DDS).To ensure the security of clinical application,the excellent properties such as none cell toxicity,nonirritant,none general toxicity,none immunological rejection are necessary.Methods:In accordance with the request of GB/T 16886.1 on security evaluation of medical biomaterials,cell toxicity test,hemolysis test,intracutaneous stimulation test,acute toxicity test,and hypersensitive test were required.Results:Cell toxicity of HA-STMP,HA-EDC,HA-GP were all less than 1.All hypersensitive tests were eligible.But HA-EDC,HA-GP produced different degrees of slight thrill,slight toxicity,hemolysis rate,which were larger than the standard value.Conclusion:HA-STMP possesses favourable biocompatibility,which is a kind of ideal biomaterials and drug carriers.展开更多
With the aim of creating biodegradable materials for medical devices clinical appointments with high hemocompatibility we have developed a new polymer product.The basis of this product is plasticized by polyethylene g...With the aim of creating biodegradable materials for medical devices clinical appointments with high hemocompatibility we have developed a new polymer product.The basis of this product is plasticized by polyethylene glycol bacterial copolymer of hydroxybutyrate and oxovalerate. A well-known antitbrombotic supplement--acetylsalicylic acid has been added to improve hemocompatibility in the polymer. The results of our studies showed a controlled prolonged separation of acetylsalicylic acid from polymeric material in the blood. We studied in vitro the dynamics of liberation of acetylsalicylic acid from polymeric coatings. It was shown that the concentration of polyethylene glycol and the thickness of the polymer layer can affect the rate of diffusion of acetylsalicylic acid from polymer films.展开更多
基金Supported by the National Natural Science Foundation of China(21322604,21476121,21136006)NSAF(U1530107)+1 种基金the National Basic Research Programof China(2012CBA01203)and Tsinghua University Initiative Scientific Research Program(2014z21026)
文摘Multiphase emulsions could be used as templates in considerable fields such as coating, optical materials, stan- dard particles and biomedicine. Among various emulsion forming methods, microfluidic technology, with good monodispersity, high controllability and operation simplicity, has been widely used in the preparation of multi- phase emulsions with different systems. This review would focus on the basic principles of forming multiphase emulsions, the recent progress in controlling multiphase flow in microfluidics, and preparation of functional ma- terials with microfluidics mainly by the authors' research group. We believe that the review will contribute to the readers in this prospective area very well. ~ 2016 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.
文摘Objective:The cross-linked production,which was prepared by HA and cross-linking agent STMP,EDC,GP through cross-linking reaction,might be used in drug delivery system(DDS).To ensure the security of clinical application,the excellent properties such as none cell toxicity,nonirritant,none general toxicity,none immunological rejection are necessary.Methods:In accordance with the request of GB/T 16886.1 on security evaluation of medical biomaterials,cell toxicity test,hemolysis test,intracutaneous stimulation test,acute toxicity test,and hypersensitive test were required.Results:Cell toxicity of HA-STMP,HA-EDC,HA-GP were all less than 1.All hypersensitive tests were eligible.But HA-EDC,HA-GP produced different degrees of slight thrill,slight toxicity,hemolysis rate,which were larger than the standard value.Conclusion:HA-STMP possesses favourable biocompatibility,which is a kind of ideal biomaterials and drug carriers.
文摘With the aim of creating biodegradable materials for medical devices clinical appointments with high hemocompatibility we have developed a new polymer product.The basis of this product is plasticized by polyethylene glycol bacterial copolymer of hydroxybutyrate and oxovalerate. A well-known antitbrombotic supplement--acetylsalicylic acid has been added to improve hemocompatibility in the polymer. The results of our studies showed a controlled prolonged separation of acetylsalicylic acid from polymeric material in the blood. We studied in vitro the dynamics of liberation of acetylsalicylic acid from polymeric coatings. It was shown that the concentration of polyethylene glycol and the thickness of the polymer layer can affect the rate of diffusion of acetylsalicylic acid from polymer films.